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Introduction

Euclid’s Elements is by far the most famous mathematical work of classical antiquity, and also has the distinction
of being the world’s oldest continuously used mathematical textbook. Little is known about the author, beyond
the fact that he lived in Alexandria around 300 BCE. The main subjects of the work are geometry, proportion, and
number theory.

Most of the theorems appearing in the Elements were not discovered by Euclid himself, but were the work of
earlier Greek mathematicians such as Pythagoras (and his school), Hippocrates of Chios, Theaetetus of Athens, and
Eudoxus of Cnidos. However, Euclid is generally credited with arranging these theorems in a logical manner, so as to
demonstrate (admittedly, not always with the rigour demanded by modern mathematics) that they necessarily follow
from five simple axioms. Euclid is also credited with devising a number of particularly ingenious proofs of previously
discovered theorems: e.g., Theorem 48 in Book 1.

The geometrical constructions employed in the Elements are restricted to those which can be achieved using a
straight-rule and a compass. Furthermore, empirical proofs by means of measurement are strictly forbidden: i.e.,
any comparison of two magnitudes is restricted to saying that the magnitudes are either equal, or that one is greater
than the other.

The Elements consists of thirteen books. Book 1 outlines the fundamental propositions of plane geometry, includ-
ing the three cases in which triangles are congruent, various theorems involving parallel lines, the theorem regarding
the sum of the angles in a triangle, and the Pythagorean theorem. Book 2 is commonly said to deal with “geometric
algebra”, since most of the theorems contained within it have simple algebraic interpretations. Book 3 investigates
circles and their properties, and includes theorems on tangents and inscribed angles. Book 4 is concerned with reg-
ular polygons inscribed in, and circumscribed around, circles. Book 5 develops the arithmetic theory of proportion.
Book 6 applies the theory of proportion to plane geometry, and contains theorems on similar figures. Book 7 deals
with elementary number theory: e.g., prime numbers, greatest common denominators, etc. Book 8 is concerned with
geometric series. Book 9 contains various applications of results in the previous two books, and includes theorems
on the infinitude of prime numbers, as well as the sum of a geometric series. Book 10 attempts to classify incommen-
surable (i.e., irrational) magnitudes using the so-called “method of exhaustion”, an ancient precursor to integration.
Book 11 deals with the fundamental propositions of three-dimensional geometry. Book 12 calculates the relative
volumes of cones, pyramids, cylinders, and spheres using the method of exhaustion. Finally, Book 13 investigates the
five so-called Platonic solids.

This edition of Euclid’s Elements presents the definitive Greek text—i.e., that edited by J.L. Heiberg (1883-
1885)—accompanied by a modern English translation, as well as a Greek-English lexicon. Neither the spurious
books 14 and 15, nor the extensive scholia which have been added to the Elements over the centuries, are included.
The aim of the translation is to make the mathematical argument as clear and unambiguous as possible, whilst still
adhering closely to the meaning of the original Greek. Text within square parenthesis (in both Greek and English)
indicates material identified by Heiberg as being later interpolations to the original text (some particularly obvious or
unhelpful interpolations have been omitted altogether). Text within round parenthesis (in English) indicates material
which is implied, but not actually present, in the Greek text.
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Fundamentals of plane geometry involving
straight-lines
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Definitions

1. A point is that of which there is no part.

2. And a line is a length without breadth.

3. And the extremities of a line are points.

4. A straight-line is whatever lies evenly with points
upon itself.

5. And a surface is that which has length and breadth
alone.

6. And the extremities of a surface are lines.

7. A plane surface is whatever lies evenly with
straight-lines upon itself.

8. And a plane angle is the inclination of the lines,
when two lines in a plane meet one another, and are not
laid down straight-on with respect to one another.

9. And when the lines containing the angle are
straight then the angle is called rectilinear.

10. And when a straight-line stood upon (another)
straight-line makes adjacent angles (which are) equal to
one another, each of the equal angles is a right-angle, and
the former straight-line is called perpendicular to that
upon which it stands.

11. An obtuse angle is greater than a right-angle.

12. And an acute angle is less than a right-angle.

13. A boundary is that which is the extremity of some-
thing.

14. A figure is that which is contained by some bound-
ary or boundaries.

15. A circle is a plane figure contained by a single
line [which is called a circumference], (such that) all of
the straight-lines radiating towards [the circumference]
from a single point lying inside the figure are equal to
one another.

16. And the point is called the center of the circle.

17. And a diameter of the circle is any straight-line,
being drawn through the center, which is brought to an
end in each direction by the circumference of the circle.
And any such (straight-line) cuts the circle in half.

18. And a semi-circle is the figure contained by the
diameter and the circumference it cuts off. And the center
of the semi-circle is the same (point) as (the center of) the
circle.

19. Rectilinear figures are those figures contained by
straight-lines: trilateral figures being contained by three
straight-lines, quadrilateral by four, and multilateral by
more than four.

20. And of the trilateral figures: an equilateral trian-
gle is that having three equal sides, an isosceles (triangle)
that having only two equal sides, and a scalene (triangle)
that having three unequal sides.
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21. And further of the trilateral figures: a right-angled
triangle is that having a right-angle, an obtuse-angled
(triangle) that having an obtuse angle, and an acute-
angled (triangle) that having three acute angles.

22. And of the quadrilateral figures: a square is that
which is right-angled and equilateral, a rectangle that
which is right-angled but not equilateral, a rhombus that
which is equilateral but not right-angled, and a rhomboid
that having opposite sides and angles equal to one an-
other which is neither right-angled nor equilateral. And
let quadrilateral figures besides these be called trapezia.

23. Parallel lines are straight-lines which, being in the
same plane, and being produced to infinity in each direc-
tion, meet with one another in neither (of these direc-
tions).

T This should really be counted as a postulate, rather than as part of a definition.
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Postulates

1. Let it have been postulated to draw a straight-line
from any point to any point.

2. And to produce a finite straight-line continuously
in a straight-line.

3. And to draw a circle with any center and radius.

4. And that all right-angles are equal to one another.

5. And that if a straight-line falling across two (other)
straight-lines makes internal angles on the same side (of
itself whose sum is) less than two right-angles, then, be-
ing produced to infinity, the two (other) straight-lines
meet on that side (of the original straight-line) that the
(sum of the internal angles) is less than two right-angles
(and do not meet on the other side).’

T This postulate effectively specifies that we are dealing with the geometry of flat, rather than curved, space.
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Common Notions

1. Things equal to the same thing are also equal to
one another.

2. And if equal things are added to equal things then
the wholes are equal.

3. And if equal things are subtracted from equal things
then the remainders are equal.’

4. And things coinciding with one another are equal
to one another.

5. And the whole [is] greater than the part.

t As an obvious extension of C.N.s 2 & 3—if equal things are added or subtracted from the two sides of an inequality then the inequality remains

an inequality of the same type.



YTOIXEIQN o'

ELEMENTS BOOK 1

’

o .

‘Ent e Sodelong edVelog menepoopévne tpiywvov
loomAeLPOV auaToxcYaL.

r

“Eotw 1| 8o9¢cion eddein nenepaapévn 1 AB.

Aet d% éni g AB edleiog tpiywvov iodmievpov
ovotoaodut.

Kévipew pev 1@ A Swotiuott &8¢ 1% AB ndndog
yeypapdw o BI'A, nod néty #évtpw pév 16 B Steotipott
3¢ 10 BA wddog yeypdySw 6 AL'E, xat &no tob I
onpetov, xd & tépvovoy dAAlovg ol wirdhot, el T A,
B onpetae eneledySwoay eddetar at I'A, I'B.

Kot émet 10 A onpelov xévtpov éoti 106 I'AB ndudov,
o éotiv ) A" ) AB- ndhy, énel 10 B onpeiov #évtpov
¢ott 100 I'AE ndxdhov, Ton éotiv 1 BI' 17] BA. édeiy9n
8¢ wod ) A 1] AB Ton énatépa Gpo v T'A, T'B 7
AB éoty Ton. & 88 ¢ ad1® Too nal dAANlotg éotiv {oo
nol 1 I'A &po ) I'B oty Ton® al tpeic &po al I'A, AB,
BT {oon &Minhoug eiotv.

Todmhevpov &po éott 10 ABL tpiywvov.  nod
ouvéotaton e V¢ Bodeiong edelag memepaopévne THC
AB- énep E8et motvjout.

Proposition 1

To construct an equilateral triangle on a given finite
straight-line.

C

Let AB be the given finite straight-line.

So it is required to construct an equilateral triangle on
the straight-line AB.

Let the circle BC D with center A and radius AB have
been drawn [Post. 3], and again let the circle ACE with
center B and radius BA have been drawn [Post. 3]. And
let the straight-lines C'A and C'B have been joined from
the point C, where the circles cut one another, to the
points A and B (respectively) [Post. 1].

And since the point A is the center of the circle CDB,
AC is equal to AB [Def. 1.15]. Again, since the point
B is the center of the circle CAE, BC is equal to BA
[Def. 1.15]. But C'A was also shown (to be) equal to AB.
Thus, C'A and CB are each equal to AB. But things equal
to the same thing are also equal to one another [C.N. 1].
Thus, C'A is also equal to C'B. Thus, the three (straight-
lines) CA, AB, and BC are equal to one another.

Thus, the triangle ABC is equilateral, and has been
constructed on the given finite straight-line AB. (Which
is) the very thing it was required to do.

 The assumption that the circles do indeed cut one another should be counted as an additional postulate. There is also an implicit assumption

that two straight-lines cannot share a common segment.
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Proposition 2f

To place a straight-line equal to a given straight-line
at a given point.

Let A be the given point, and BC the given straight-
line. So it is required to place a straight-line at point A
equal to the given straight-line BC.

For let the straight-line AB have been joined from
point A to point B [Post. 1], and let the equilateral trian-
gle D AB have been been constructed upon it [Prop. 1.1].
And let the straight-lines AE and BF have been pro-
duced in a straight-line with DA and DB (respectively)
[Post. 2]. And let the circle CGH with center B and ra-
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dius BC have been drawn [Post. 3], and again let the cir-
cle GK L with center D and radius DG have been drawn
[Post. 3].

Therefore, since the point B is the center of (the cir-
cle) CGH, BC is equal to BG [Def. 1.15]. Again, since
the point D is the center of the circle GK L, DL is equal
to DG [Def. 1.15]. And within these, DA is equal to DB.
Thus, the remainder AL is equal to the remainder BG
[C.N. 3]. But BC was also shown (to be) equal to BG.
Thus, AL and BC are each equal to BG. But things equal
to the same thing are also equal to one another [C.N. 1].
Thus, AL is also equal to BC.

Thus, the straight-line AL, equal to the given straight-
line BC, has been placed at the given point A. (Which
is) the very thing it was required to do.

T This proposition admits of a number of different cases, depending on the relative positions of the point A and the line BC. In such situations,

Euclid invariably only considers one particular case—usually, the most difficult—and leaves the remaining cases as exercises for the reader.
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Proposition 3

For two given unequal straight-lines, to cut off from
the greater a straight-line equal to the lesser.

Let AB and C be the two given unequal straight-lines,
of which let the greater be AB. So it is required to cut off
a straight-line equal to the lesser C from the greater AB.

Let the line AD, equal to the straight-line C, have
been placed at point A [Prop. 1.2]. And let the circle
DEF have been drawn with center A and radius AD
[Post. 3].

And since point A is the center of circle DEF, AE
is equal to AD [Def. 1.15]. But, C is also equal to AD.
Thus, AE and C are each equal to AD. So AF is also
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equal to C' [C.N. 1].
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E
A B
F

Thus, for two given unequal straight-lines, AB and C,
the (straight-line) AFE, equal to the lesser C, has been cut
off from the greater AB. (Which is) the very thing it was
required to do.

Proposition 4

If two triangles have two corresponding sides equal,
and have the angles enclosed by the equal sides equal,
then they will also have equal bases, and the two trian-
gles will be equal, and the remaining angles subtended
by the equal sides will be equal to the corresponding re-
maining angles.

A D
| /\ ) /\F

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF, re-
spectively. (Thatis) AB to DE, and AC to DF'. And (let)
the angle BAC (be) equal to the angle EDF'. I say that
the base BC is also equal to the base EF, and triangle
ABC will be equal to triangle DEF, and the remaining
angles subtended by the equal sides will be equal to the
corresponding remaining angles. (Thatis) ABC to DEF,
and ACB to DFE.

Let the triangle ABC be applied to the triangle
DEF, the point A being placed on the point D, and
the straight-line AB on DE. The point B will also coin-

cide with F, on account of AB being equal to DE. So
(because of) AB coinciding with DFE, the straight-line

10
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 The application of one figure to another should be counted as an additional postulate.

¥ Since Post. 1 implicitly assumes that the straight-line joining two given points is unique.
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AB mhevpay ) A" mhevpd, xot mpooenPeinodwony equal to the side AC, and let the straight-lines BD and
én’ edelog todg AB, AT eb3eton af BA, TE: Aéyw, éu  CE have been produced in a straight-line with AB and
7 pév omo ABIT yovie ) Ond AL'B Yo éotiv, 1 8¢ dbnd  AC (respectively) [Post. 2]. I say that the angle ABC is

I'BA 3 dno BI'E. equal to ACB, and (angle) CBD to BCE.

EideSw yap ént g BA tuyov onueiov 10 Z, xat For let the point F' have been taken somewhere on
&enenodw &no e pellovog ¢ AE 17 éhdocowvt 1) AZ BD, and let AG have been cut off from the greater AF,
fon 1 AH, xat éneledySwouv at ZI', HB edeta. equal to the lesser AF' [Prop. 1.3]. Also, let the straight-

‘Emel obv fon éotiv 7| uév AZ 131 AH # 8¢ AB 13} lines F'C and GB have been joined [Post. 1].

11
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AL, 8o o1 at ZA, AL duvot toic HA, AB Yoo eiolv
enatépo Exatépo nol Ywvioy oty meptéyovot Ty OO
ZAH' Bédowc &po 1 ZI' Béoet 1) HB Ton éotiv, ol
0 AZI" tpiywvov 1@ AHB tpiydve foov Eotar, xal ol
Aotmod ywvion tolg Aotmal ywviatg oot Ecoviat éxatépa
enatépa, Oy &c al Toor mhevpod dnoteivovoty, 1| pév OO
Al'Z 7 Ono ABH, 1 88 Ono AZI 19 dno AHB. st émet
8\ 1 AZ 6 1 AH oy Tom, ov 1 AB ) AT éotwy
o, Aoy &pa 1) BZ Aoy} 17 I'H éoty Ton. é8ely 9 S¢
not | ZI" 1 HB Ton 8bo 81 at BZ, ZI" dvat taig I'H,
HB ioon slolv éxatépa éxatépo not ywvie 1 bndo BZI
ywvig ™ ono I'HB Yon, xatl Bdoic adtdv nowi 7 BI™
nol 10 BZI &pa tpiywvov 16 I'HB tptydvew foov Eota,
nol ol Aotmal ywvlo Tollg Aowmodc ywvioug oot Eoovton
enatépa enatépa, O &g al foow mhevpol LrotetvovoLy:
fon &pa éotiv 9 pév Omo ZBI' 3 dno HI'B # 8¢ dmo
BI'Z 17} dno TBH. énet obv 8An 1 dno ABH yovia i
™ 0md AT'Z yovig é8eiydn fon, ov % oo TBH 13 Omo
BI'Z Ton, Aoy &po 1 Ono ABIL lowny 17} Ono AI'B
éonv {on nal eiot mpog 1 Bdoer tob ABI' tprydivou.
€0ely9n 8¢ nod 7 Omo ZBI' 7] dnd HI'B Yo nai eiow
OO ™V Baov.

T&v &po lcoouehdv ToLywvwv ol 1p0¢ ™ Bdost
yoviar foor dAAnlog eioly, xol mpooeuPBindetomdy Ty
fowv eddetdv of dmd v Bdowv ywvier Toow &AANAcLG
goovtar Smep Edet Oetéo.

g’
‘Edv tprydvou ol 8bo yovien fom drlnoug dov,
nodl ol OTO e Toug ywvlag broteivovoor misvpol oo
danhong Eoovto.

B I
“Eotw tplywvov 10 ABI" Tonv €yov tv dno ABI
yoviay ™ 0nd AI'B yovie AMyw, St xod mhevpd 1 AB
nhevpd ) Al éoty fom.
Ei yap &vwiooc éoty 1 AB ) AL, 7 étépo adT@dv
pellwy gotly. Eotw peilwv 1 AB, xod dynpflodw &nod

In fact, since AF is equal to AG, and AB to AC,
the two (straight-lines) F'A, AC are equal to the two
(straight-lines) GA, AB, respectively. They also encom-
pass a common angle FAG. Thus, the base F'C' is equal
to the base GB, and the triangle AFC will be equal to the
triangle AGB, and the remaining angles subtendend by
the equal sides will be equal to the corresponding remain-
ing angles [Prop. 1.4]. (Thatis) ACF to ABG, and AFC
to AGB. And since the whole of AF is equal to the whole
of AG, within which AB is equal to AC, the remainder
BF is thus equal to the remainder CG [C.N. 3]. But F'C
was also shown (to be) equal to GB. So the two (straight-
lines) BF, FC are equal to the two (straight-lines) CG,
GB, respectively, and the angle BF'C (is) equal to the
angle CG B, and the base BC is common to them. Thus,
the triangle BF'C will be equal to the triangle CGB, and
the remaining angles subtended by the equal sides will be
equal to the corresponding remaining angles [Prop. 1.4].
Thus, F'BC is equal to GCB, and BCF to CBG. There-
fore, since the whole angle ABG was shown (to be) equal
to the whole angle ACF, within which CBG is equal to
BCF, the remainder ABC' is thus equal to the remainder
ACB [C.N. 3]. And they are at the base of triangle ABC.
And FBC was also shown (to be) equal to GCB. And
they are under the base.

Thus, for isosceles triangles, the angles at the base are
equal to one another, and if the equal sides are produced
then the angles under the base will be equal to one an-
other. (Which is) the very thing it was required to show.

Proposition 6

If a triangle has two angles equal to one another then
the sides subtending the equal angles will also be equal
to one another.

A

B C
Let ABC be a triangle having the angle ABC equal
to the angle ACB. I say that side AB is also equal to side
AC.
For if AB is unequal to AC then one of them is
greater. Let AB be greater. And let DB, equal to

12
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¢ pellovog e AB 1 éhdttow 1) Al Tom 11 AB, st
éneledydw 1 Al

‘Emel obv {on éotiv 1 AB ) AT nowy 8¢ 7 BT,
dvo &Y ot AB, BI' 8%o taig ALY, I'B oo eiolv énatépa
enatépy, xal ywvio 1 0no ABIT yowa 1 010 AL'B goty
fon Baotg &pa 1) A" Bdoet ) AB Ton éotiv, not 10 ABI”
tplywvoy 1@ AI'B tpiydve foov Eotat, 10 €lacoov 16
pellove 6mep &romov obu &po &wiadg éotv 1 AB TH
ATI™ Yo &po.

Edv &po tprydvou o 8bo yovicn Toow dinhoug oy,
nol ol OTO TG Toug ywviag broteivovoot misvpol ot
dMNhoug Eoovtow Smep Edet Setéot.

the lesser AC, have been cut off from the greater AB
[Prop. 1.3]. And let DC have been joined [Post. 1].

Therefore, since DB is equal to AC, and BC (is) com-
mon, the two sides DB, BC are equal to the two sides
AC, CB, respectively, and the angle DBC is equal to the
angle ACB. Thus, the base DC' is equal to the base AB,
and the triangle D BC will be equal to the triangle ACB
[Prop. 1.4], the lesser to the greater. The very notion (is)
absurd [C.N. 5]. Thus, AB is not unequal to AC. Thus,
(it is) equal.t

Thus, if a triangle has two angles equal to one another
then the sides subtending the equal angles will also be
equal to one another. (Which is) the very thing it was
required to show.

 Here, use is made of the previously unmentioned common notion that if two quantities are not unequal then they must be equal. Later on, use

is made of the closely related common notion that if two quantities are not greater than or less than one another, respectively, then they must be

equal to one another.

Z.

‘Emi g adtig eddelog 8o o adroic edIelong dhhou
8bo ebdeton Toouw éxatépo éxatépy ob ovoTadjocovtot
P0G &AM not EAAw onpelw éml T& adTd UéPT T AdTX
népato Eyovoan tals € dpyic edeioung.

T
A

A B

Ei y&p Svvatdv, émt g adtig eddeiog g AB dvo
tog adTolg eddelog todc ALY, T'B &Ahot Vo ed3etont ol
AA, AB Toou enatépa Exatepo GLVECTATWOXY TPOC JAAW
nol 8w onpelw T te 1IN nod A éni té adtd pépn T
adtd mépota Eyovoo, &ote Tony elvon v pév A )
AA 10 ad1o Tépag Eyovoay adty 10 A, ™ 8¢ I'B 1)
AB 10 ad10 mépag Exovoay abt) 10 B, not éneledySw 7
TA.

"Emel obv Ton éotiv i} AT 19 AA, Ton ot nad yovia
7 omo AT'A 17} dnd AAT™ pellowv &pa 1 dndo AAL t¥¢
omo AI'B* ol &po 9 Omo I'AB peiCwv éoti g Omo
AI'B. mdhwv énet Tor éotiv 1§ I'B 7] AB, Ton ol nod
ywvie ] 010 I'AB yovie 17 dno AI'B. é8eiydr 8¢ adtig
notl TOAMD pellowv Snep éotiv &Sbatov.

Odn &po émt g adThg eddelag SVo Tolg adtalg
ebdelong &AAon S8Vo edIeion oo éxatépa éxatépa ov-

Proposition 7

On the same straight-line, two other straight-lines
equal, respectively, to two (given) straight-lines (which
meet) cannot be constructed (meeting) at a different
point on the same side (of the straight-line), but having
the same ends as the given straight-lines.

C
D

A B

For, if possible, let the two straight-lines AD, DB,
equal to two (given) straight-lines AC, C B, respectively,
have been constructed on the same straight-line AB,
meeting at different points, C' and D, on the same side
(of AB), and having the same ends (on AB). So CA and
DA are equal, having the same ends at A, and C'B and
DB are equal, having the same ends at B. And let CD
have been joined [Post. 1].

Therefore, since AC' is equal to AD, the angle ACD
is also equal to angle ADC [Prop. 1.5]. Thus, ADC (is)
greater than DCB [C.N. 5]. Thus, CDB is much greater
than DCB [C.N. 5]. Again, since C'B is equal to DB, the
angle C'DB is also equal to angle DCB [Prop. 1.5]. But
it was shown that the former (angle) is also much greater
(than the latter). The very thing is impossible.

Thus, on the same straight-line, two other straight-

13
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éni Bdow v EZ épapudoet, o 8¢ BA, Al' mAievpal
éni teg EA, AZ obu épappdoovaoty dArd napodl&éovoty
oc ot EH, HZ, ovotadncovton énmi tg adtig edelog
dvo tale adtodc ebdelong &Aha 8vo edIetan Toa Enatépa
EnaTépy TPOG GAAW ol FAAw onpeiey Emt t& ahtd uépm
0 abtd mépotar Eyovout. ob ouvviotavtar 3¢ odn Gpo
gpapuolopévng e BI' Baoewe éni v EZ Bdowv odx
gpappdoovot not al BA, Al mhevpad ént g EA, AZ.
gpopudoovoy Gpor Gote ual ywviee 1 Omo BAI ém
Yowviay v Ono BEAZ gpapudost nod Ton adty] Eoto.

‘E&v &po 860 tplywve &g 8o mhevpds [taic] ddo
nhevpaic Toog Eyn éxatépay exatépy xol Ty Bdotv 7
Béoet Tonyv Eyn, nod v ywviey 1] yovie lony et v
OO @Y Towv edJetdv mepteyouévny Smep Edet Setéou.

lines equal, respectively, to two (given) straight-lines
(which meet) cannot be constructed (meeting) at a dif-
ferent point on the same side (of the straight-line), but
having the same ends as the given straight-lines. (Which
is) the very thing it was required to show.

Proposition 8

If two triangles have two corresponding sides equal,
and also have equal bases, then the angles encompassed
by the equal straight-lines will also be equal.

A D g

B E

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF,
respectively. (That is) AB to DE, and AC to DF. Let
them also have the base BC equal to the base EF. I say
that the angle BAC is also equal to the angle EDF.

For if triangle ABC is applied to triangle DEF, the
point B being placed on point F, and the straight-line
BC on EF, point C will also coincide with F', on account
of BC being equal to EF'. So (because of) BC coinciding
with EF, (the sides) BA and C' A will also coincide with
ED and DF (respectively). For if base BC' coincides with
base EF, but the sides AB and AC do not coincide with
ED and DF (respectively), but miss like EG and GF (in
the above figure), then we will have constructed upon
the same straight-line, two other straight-lines equal, re-
spectively, to two (given) straight-lines, and (meeting) at
a different point on the same side (of the straight-line),
but having the same ends. But (such straight-lines) can-
not be constructed [Prop. 1.7]. Thus, the base BC' being
applied to the base E'F, the sides BA and AC' cannot not
coincide with ED and DF (respectively). Thus, they will
coincide. So the angle BAC will also coincide with angle
EDF, and they will be equal [C.N. 4].

Thus, if two triangles have two corresponding sides
equal, and have equal bases, then the angles encom-
passed by the equal straight-lines will also be equal.
(Which is) the very thing it was required to show.

14
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Thv dodetoary ywviav edIoypappov Siye tepeiv.
A
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B I

“"Eotw 1 dodcioa ywvia ebIOypapupmog 7
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¢\
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BAT.

’

L.

Thv dodetoay edelay menepaopévny Siya tepely.

“Eotw 1 dodetox edIelo nenepaopévy | AB- 8el o9
™y AB ed8elay nenepaopévny Siye tepeiv.

Yoveotdto én adtig tpiywvov iodmhevpov 1O ABI,
nod tetpufodw 1 Ond AI'B ywvie Siyo 7] T'A edJeior
Aéyow, 61t 1 AB b€t Siyor tétpnton natd 1O A onpeiov.

‘Emel yop on éotiv § AL 17 I'B, nowy 88 7 TA,
dvo O ai ALY, I'A 8o todg BI', T'A oo ciotv énatépa
enatépa nod ywvioe 1 Ono AA ywvie 7] Ond BI'A for
gotlv Baorg &pa 11 AA Béost 1 BA Yor éotiv.

Proposition 9

To cut a given rectilinear angle in half.

A

F
B C

Let BAC be the given rectilinear angle. So it is re-
quired to cut it in half.

Let the point D have been taken somewhere on AB,
and let AF, equal to AD, have been cut off from AC
[Prop. 1.3], and let DE have been joined. And let the
equilateral triangle DEF have been constructed upon
DE [Prop. 1.1], and let AF' have been joined. I say that
the angle BAC has been cut in half by the straight-line
AF.

For since AD is equal to AE, and AF is common,
the two (straight-lines) DA, AF are equal to the two
(straight-lines) KA, AF, respectively. And the base DF
is equal to the base EF. Thus, angle DAF is equal to
angle EAF [Prop. 1.8].

Thus, the given rectilinear angle BAC has been cut in
half by the straight-line AF. (Which is) the very thing it
was required to do.

Proposition 10

To cut a given finite straight-line in half.

Let AB be the given finite straight-line. So it is re-
quired to cut the finite straight-line AB in half.

Let the equilateral triangle ABC have been con-
structed upon (AB) [Prop. 1.1], and let the angle ACB
have been cut in half by the straight-line C' D [Prop. 1.9].
I say that the straight-line AB has been cut in half at
point D.

For since AC is equal to CB, and C'D (is) common,
the two (straight-lines) AC, CD are equal to the two
(straight-lines) BC, CD, respectively. And the angle
ACD is equal to the angle BC'D. Thus, the base AD
is equal to the base BD [Prop. 1.4].
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A D B

Thus, the given finite straight-line AB has been cut
in half at (point) D. (Which is) the very thing it was
required to do.

Proposition 11

To draw a straight-line at right-angles to a given
straight-line from a given point on it.

F

A B

D C E

Let AB be the given straight-line, and C the given
point on it. So it is required to draw a straight-line from
the point C' at right-angles to the straight-line AB.

Let the point D be have been taken somewhere on
AC, and let CE be made equal to C'D [Prop. 1.3], and
let the equilateral triangle F'DFE have been constructed
on DFE [Prop. 1.1], and let F'C have been joined. I say
that the straight-line F'C' has been drawn at right-angles
to the given straight-line AB from the given point C on
1t.

For since DC is equal to CE, and C'F is common,
the two (straight-lines) DC, CF are equal to the two
(straight-lines), FC, CF, respectively. And the base DF
is equal to the base F'E. Thus, the angle DCF is equal
to the angle FCF [Prop. 1.8], and they are adjacent.
But when a straight-line stood on a(nother) straight-line
makes the adjacent angles equal to one another, each of
the equal angles is a right-angle [Def. 1.10]. Thus, each
of the (angles) DC'F and FCE is a right-angle.

Thus, the straight-line CF' has been drawn at right-
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Emi v 8o3etooy eddetay &metpov &nd tob Sodévtog

angles to the given straight-line AB from the given point
C on it. (Which is) the very thing it was required to do.

Proposition 12

To draw a straight-line perpendicular to a given infi-

onpeiov, 6 pn ot & adTig, ud9etov edelay ypaupuiy  nite straight-line from a given point which is not on it.

&yoyev.
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Let AB be the given infinite straight-line and C the
given point, which is not on (AB). So it is required to
draw a straight-line perpendicular to the given infinite
straight-line AB from the given point C, which is not on
(AB).

For let point D have been taken somewhere on the
other side (to C) of the straight-line AB, and let the cir-
cle EFG have been drawn with center C and radius CD
[Post. 3], and let the straight-line EG have been cut in
half at (point) H [Prop. 1.10], and let the straight-lines
CG, CH, and C'E have been joined. I say that a (straight-
line) C'H has been drawn perpendicular to the given in-
finite straight-line AB from the given point C, which is
not on (AB).

For since GH is equal to HE, and HC (is) common,
the two (straight-lines) GH, HC are equal to the two
straight-lines FH, HC, respectively, and the base CG is
equal to the base CE. Thus, the angle CHG is equal
to the angle FHC [Prop. 1.8], and they are adjacent.
But when a straight-line stood on a(nother) straight-line
makes the adjacent angles equal to one another, each of
the equal angles is a right-angle, and the former straight-
line is called perpendicular to that upon which it stands
[Def. 1.10].

Thus, the (straight-line) C H has been drawn perpen-
dicular to the given infinite straight-line AB from the
given point C, which is not on (AB). (Which is) the very
thing it was required to do.
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Proposition 13

If a straight-line stood on a(nother) straight-line
makes angles, it will certainly either make two right-
angles, or (angles whose sum is) equal to two right-
angles.

E

A

D B C

For let some straight-line AB stood on the straight-
line CD make the angles CBA and ABD. 1 say that
the angles C BA and ABD are certainly either two right-
angles, or (have a sum) equal to two right-angles.

In fact, if CBA is equal to ABD then they are two
right-angles [Def. 1.10]. But, if not, let BE have been
drawn from the point B at right-angles to [the straight-
line] CD [Prop. 1.11]. Thus, CBE and EBD are two
right-angles. And since CBF is equal to the two (an-
gles) CBA and ABF, let EBD have been added to both.
Thus, the (sum of the angles) CBE and EBD is equal to
the (sum of the) three (angles) CBA, ABE, and EBD
[C.N. 2]. Again, since DBA is equal to the two (an-
gles) DBE and EBA, let ABC have been added to both.
Thus, the (sum of the angles) DBA and ABC is equal to
the (sum of the) three (angles) DBE, EBA, and ABC
[C.N. 2]. But (the sum of) CBE and EBD was also
shown (to be) equal to the (sum of the) same three (an-
gles). And things equal to the same thing are also equal
to one another [C.N. 1]. Therefore, (the sum of) CBE
and EBD is also equal to (the sum of) DBA and ABC.
But, (the sum of) CBE and EBD is two right-angles.
Thus, (the sum of) ABD and ABC is also equal to two
right-angles.

Thus, if a straight-line stood on a(nother) straight-
line makes angles, it will certainly either make two right-
angles, or (angles whose sum is) equal to two right-
angles. (Which is) the very thing it was required to show.

Proposition 14

If two straight-lines, not lying on the same side, make
adjacent angles (whose sum is) equal to two right-angles
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at the same point on some straight-line, then the two
straight-lines will be straight-on (with respect) to one an-
other.

A E

C B D

For let two straight-lines BC and BD, not lying on the
same side, make adjacent angles ABC and ABD (whose
sum is) equal to two right-angles at the same point B on
some straight-line AB. I say that BD is straight-on with
respect to C'B.

For if BD is not straight-on to BC then let BE be
straight-on to C'B.

Therefore, since the straight-line AB stands on the
straight-line CBE, the (sum of the) angles ABC and
ABE is thus equal to two right-angles [Prop. 1.13]. But
(the sum of) ABC and ABD is also equal to two right-
angles. Thus, (the sum of angles) CBA and ABF is equal
to (the sum of angles) CBA and ABD [C.N. 1]. Let (an-
gle) C BA have been subtracted from both. Thus, the re-
mainder ABF is equal to the remainder ABD [C.N. 3],
the lesser to the greater. The very thing is impossible.
Thus, BE is not straight-on with respect to CB. Simi-
larly, we can show that neither (is) any other (straight-
line) than BD. Thus, CB is straight-on with respect to
BD.

Thus, if two straight-lines, not lying on the same side,
make adjacent angles (whose sum is) equal to two right-
angles at the same point on some straight-line, then the
two straight-lines will be straight-on (with respect) to
one another. (Which is) the very thing it was required
to show.

Proposition 15

If two straight-lines cut one another then they make
the vertically opposite angles equal to one another.

For let the two straight-lines AB and C'D cut one an-
other at the point E. I say that angle AFC is equal to
(angle) DEB, and (angle) CEB to (angle) AED.

For since the straight-line AF stands on the straight-
line CD, making the angles CEA and AED, the (sum
of the) angles CEA and AED is thus equal to two right-
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angles [Prop. 1.13]. Again, since the straight-line DFE
stands on the straight-line AB, making the angles AED
and DEB, the (sum of the) angles AED and DEB is
thus equal to two right-angles [Prop. 1.13]. But (the sum
of) CEA and AED was also shown (to be) equal to two
right-angles. Thus, (the sum of) CEA and AED is equal
to (the sum of) AED and DEB [C.N. 1]. Let AED have
been subtracted from both. Thus, the remainder CE A is
equal to the remainder BED [C.N. 3]. Similarly, it can
be shown that CEB and DE A are also equal.

A

B

Thus, if two straight-lines cut one another then they
make the vertically opposite angles equal to one another.
(Which is) the very thing it was required to show.

Proposition 16

For any triangle, when one of the sides is produced,
the external angle is greater than each of the internal and
opposite angles.

Let ABC be a triangle, and let one of its sides BC'
have been produced to D. I say that the external angle
ACD is greater than each of the internal and opposite
angles, CBA and BAC.

Let the (straight-line) AC have been cut in half at
(point) E [Prop. 1.10]. And BF being joined, let it have
been produced in a straight-line to (point) F.! And let
EF be made equal to BE [Prop. 1.3], and let F'C have
been joined, and let AC have been drawn through to
(point) G.

Therefore, since AF is equal to EC, and BF to EF,
the two (straight-lines) AE, EB are equal to the two
(straight-lines) CE, EF, respectively. Also, angle AEB
is equal to angle FEC, for (they are) vertically opposite
[Prop. 1.15]. Thus, the base AB is equal to the base F'C,
and the triangle ABFE is equal to the triangle FFEC, and
the remaining angles subtended by the equal sides are
equal to the corresponding remaining angles [Prop. 1.4].
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T The implicit assumption that the point F lies in the interior of the angle ABC should be counted as an additional postulate.
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the (sum of the angles) ABC and BC A. But, (the sum of)
ACD and ACB is equal to two right-angles [Prop. 1.13].
Thus, (the sum of) ABC and BC A is less than two right-
angles. Similarly, we can show that (the sum of) BAC
and ACB is also less than two right-angles, and again
(that the sum of) CAB and ABC (is less than two right-
angles).

Thus, for any triangle, (the sum of any) two angles
is less than two right-angles, (the angles) being taken up
in any (possible way). (Which is) the very thing it was
required to show.

Proposition 18

For any triangle, the greater side subtends the greater
angle.

A

B C

For let ABC be a triangle having side AC greater than
AB. 1say that angle ABC is also greater than BC A.

For since AC is greater than AB, let AD be made
equal to AB [Prop. 1.3], and let BD have been joined.

And since angle ADB is external to triangle BCD, it
is greater than the internal and opposite (angle) DC'B
[Prop. 1.16]. But ADB (is) equal to ABD, since side
AB is also equal to side AD [Prop. 1.5]. Thus, ABD is
also greater than AC'B. Thus, ABC is much greater than
ACB.

Thus, for any triangle, the greater side subtends the
greater angle. (Which is) the very thing it was required
to show.

Proposition 19

For any triangle, the greater angle is subtended by the
greater side.

Let ABC be a triangle having the angle ABC greater
than BC A. 1 say that side AC is also greater than side
AB.

For if not, AC is certainly either equal to, or less than,
AB. In fact, AC is not equal to AB. For then angle ABC
would also have been equal to AC'B [Prop. 1.5]. But it is
not. Thus, AC is not equal to AB. Neither, indeed, is AC
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less than AB. For then angle ABC would also have been
less than AC'B [Prop. 1.18]. But it is not. Thus, AC is
not less than AB. But it was shown that (AC) is also not
equal (to AB). Thus, AC is greater than AB.

A

C

Thus, for any triangle, the greater angle is subtended
by the greater side. (Which is) the very thing it was re-
quired to show.

Proposition 20

For any triangle, (the sum of any) two sides is greater
than the remaining (side), (the sides) being taken up in
any (possible way).

D

B C

For let ABC be a triangle. I say that for triangle ABC
(the sum of any) two sides is greater than the remaining
(side), (the sides) being taken up in any (possible way).
(So), (the sum of) BA and AC (is greater) than BC, (the
sum of) AB and BC than AC, and (the sum of) BC and
CA than AB.

For let BA have been drawn through to point D, and
let AD be made equal to CA [Prop. 1.3], and let DC
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have been joined.

Therefore, since DA is equal to AC, the angle ADC
is also equal to AC'D [Prop. 1.5]. Thus, BCD is greater
than ADC. And since triangle DC B has the angle BCD
greater than BDC, and the greater angle subtends the
greater side [Prop. 1.19], DB is thus greater than BC.
But DA is equal to AC. Thus, (the sum of) BA and AC
is greater than BC. Similarly, we can show that (the sum
of) AB and BC is also greater than C'A, and (the sum of)
BC and C'A than AB.

Thus, for any triangle, (the sum of any) two sides is
greater than the remaining (side), (the sides) being taken
up in any (possible way). (Which is) the very thing it was
required to show.

Proposition 21

If two internal straight-lines are constructed on one
of the sides of a triangle, from its ends, the constructed
(straight-lines) will be less than the two remaining sides
of the triangle, but will encompass a greater angle.

A
E

B C

For let the two internal straight-lines BD and DC
have been constructed on one of the sides BC of the tri-
angle ABC, from its ends B and C (respectively). I say
that BD and DC are less than the (sum of the) two re-
maining sides of the triangle BA and AC, but encompass
an angle BDC greater than BAC.

For let BD have been drawn through to E. And since
for every triangle (the sum of any) two sides is greater
than the remaining (side) [Prop. 1.20], for triangle ABE
the (sum of the) two sides AB and AFE is thus greater
than BE. Let EC have been added to both. Thus, (the
sum of) BA and AC is greater than (the sum of) BFE and
EC. Again, since in triangle CED the (sum of the) two
sides CF and ED is greater than CD, let DB have been
added to both. Thus, (the sum of) CE and EB is greater
than (the sum of) CD and DB. But, (the sum of) BA
and AC was shown (to be) greater than (the sum of) BE
and EC. Thus, (the sum of) BA and AC is much greater
than (the sum of) BD and DC.

Again, since for every triangle the external angle is
greater than the internal and opposite (angles) [Prop.
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1.16], for triangle CDFE the external angle BDC'is thus
greater than CED. Accordingly, for the same (reason),
the external angle CEB of the triangle ABFE is also
greater than BAC'. But, BDC was shown (to be) greater
than CEB. Thus, BDC is much greater than BAC.
Thus, if two internal straight-lines are constructed on
one of the sides of a triangle, from its ends, the con-
structed (straight-lines) are less than the two remain-
ing sides of the triangle, but encompass a greater angle.
(Which is) the very thing it was required to show.

Proposition 22

To construct a triangle from three straight-lines which
are equal to three given [straight-lines]. It is necessary
for (the sum of) two (of the straight-lines) to be greater
than the remaining (one), (the straight-lines) being taken
up in any (possible way) [on account of the (fact that) for
every triangle (the sum of any) two sides is greater than
the remaining (one), (the sides) being taken up in any
(possible way) [Prop. 1.20] ].

A
B
C
K
D i G H E
L

Let A, B, and C be the three given straight-lines, of
which let (the sum of any) two be greater than the re-
maining (one), (the straight-lines) being taken up in (any
possible way). (Thus), (the sum of) A and B (is greater)
than C, (the sum of) 4 and C than B, and also (the sum
of) B and C than A. So it is required to construct a trian-
gle from (straight-lines) equal to A, B, and C.

Let some straight-line DFE be set out, terminated at
D, and infinite in the direction of E. And let DF made
equal to A [Prop. 1.3], and F'G equal to B [Prop. 1.3],
and GH equal to C [Prop. 1.3]. And let the circle DKL
have been drawn with center F' and radius F'D. Again,
let the circle K LH have been drawn with center G and
radius GH. And let KF' and K G have been joined. I say
that the triangle K F'G has been constructed from three
straight-lines equal to A, B, and C.
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For since point F' is the center of the circle DK L, FFD
is equal to F'K. But, F'D is equal to A. Thus, K F is also
equal to A. Again, since point G is the center of the circle
LKH,GH is equal to GK. But, GH is equal to C. Thus,
K@ is also equal to C. And FG is equal to B. Thus, the
three straight-lines K F', FG, and GK are equal to A, B,
and C (respectively).

Thus, the triangle K F'G has been constructed from
the three straight-lines KF, FG, and GK, which are
equal to the three given straight-lines A, B, and C (re-
spectively). (Which is) the very thing it was required to
do.

Proposition 23

To construct a rectilinear angle equal to a given recti-
linear angle at a (given) point on a given straight-line.

D

A G B

Let AB be the given straight-line, A the (given) point
on it, and DCE the given rectilinear angle. So it is re-
quired to construct a rectilinear angle equal to the given
rectilinear angle DCFE at the (given) point A on the given
straight-line AB.

Let the points D and E have been taken somewhere
on each of the (straight-lines) C'D and C'E (respectively),
and let DFE have been joined. And let the triangle AFG
have been constructed from three straight-lines which are
equal to CD, DE, and CFE, such that CD is equal to AF,
CE to AG, and also DF to FG [Prop. 1.22].

Therefore, since the two (straight-lines) DC, CE are
equal to the two straight-lines F'A, AG, respectively, and
the base DE is equal to the base F'G, the angle DCE is
thus equal to the angle FAG [Prop. 1.8].

Thus, the rectilinear angle FAG, equal to the given
rectilinear angle DCE, has been constructed at the
(given) point A on the given straight-line AB. (Which
is) the very thing it was required to do.
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Proposition 24

If two triangles have two sides equal to two sides, re-
spectively, but (one) has the angle encompassed by the
equal straight-lines greater than the (corresponding) an-
gle (in the other), then (the former triangle) will also
have a base greater than the base (of the latter).

A D

F
C G

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF,
respectively. (That is), AB to DFE, and AC to DF. Let
them also have the angle at A greater than the angle at
D. I say that the base BC is greater than the base F'F.

For since angle BAC is greater than angle EDF,
let (angle) EDG, equal to angle BAC, have been con-
structed at point D on the straight-line DFE [Prop. 1.23].
And let DG be made equal to either of AC or DF
[Prop. 1.3], and let EG and F'G have been joined.

Therefore, since AB is equal to DE and AC to DG,
the two (straight-lines) BA, AC are equal to the two
(straight-lines) ED, DG, respectively. Also the angle
BAC is equal to the angle EDG. Thus, the base BC
is equal to the base EG [Prop. 1.4]. Again, since DF
is equal to DG, angle DGF is also equal to angle DFG
[Prop. 1.5]. Thus, DFG (is) greater than EGF. Thus,
EFG is much greater than FGF. And since triangle
EFG has angle EFG greater than EGF, and the greater
angle subtends the greater side [Prop. 1.19], side EG (is)
thus also greater than EF. But EG (is) equal to BC.
Thus, BC (is) also greater than EF.

Thus, if two triangles have two sides equal to two
sides, respectively, but (one) has the angle encompassed
by the equal straight-lines greater than the (correspond-
ing) angle (in the other), then (the former triangle) will
also have a base greater than the base (of the latter).
(Which is) the very thing it was required to show.
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Proposition 25

If two triangles have two sides equal to two sides,
respectively, but (one) has a base greater than the base
(of the other), then (the former triangle) will also have
the angle encompassed by the equal straight-lines greater
than the (corresponding) angle (in the latter).

A

E F

Let ABC and DEF be two triangles having the two
sides AB and AC equal to the two sides DE and DF,
respectively (That is), AB to DF, and AC to DF. And
let the base BC be greater than the base F'F. I say that
angle BAC is also greater than EDF.

For if not, (BAC) is certainly either equal to, or less
than, (FDF). In fact, BAC is not equal to EDF. For
then the base BC would also have been equal to EF
[Prop. 1.4]. But it is not. Thus, angle BAC is not equal
to EDF. Neither, indeed, is BAC less than EDF. For
then the base BC would also have been less than EF
[Prop. 1.24]. But it is not. Thus, angle BAC is not less
than EDF. But it was shown that (BAC is) also not
equal (to EDF). Thus, BAC is greater than EDF'.

Thus, if two triangles have two sides equal to two
sides, respectively, but (one) has a base greater than the
base (of the other), then (the former triangle) will also
have the angle encompassed by the equal straight-lines
greater than the (corresponding) angle (in the latter).
(Which is) the very thing it was required to show.

Proposition 26

If two triangles have two angles equal to two angles,
respectively, and one side equal to one side—in fact, ei-
ther that by the equal angles, or that subtending one of
the equal angles—then (the triangles) will also have the
remaining sides equal to the [corresponding] remaining
sides, and the remaining angle (equal) to the remaining
angle.

Let ABC and DEF be two triangles having the two
angles ABC and BCA equal to the two (angles) DEF

28



YTOIXEIQN o'

ELEMENTS BOOK 1

AEZ, tv 8g Omo BI'A 17 bno EZA" gyétw 08 nat ploy
TAELPXY L& TAELP ToMY, TEOTEPOV THY TPOC TUlS lootg
yoviarg ™y BI' 1) EZ: Myw, 61t nol &g Aomdg mhevpdg
Tolg hotmolg mhevpolds Toog Efet éxatépoyv Enatépa, TV
pev AB 1 AE v 8¢ AT 1] AZ, ot Ty Aoy ywviow
7] Aotny] Ywvie, Ty Omo BAL 7] bno EAZ.

A

A
H

E

B o T

Ei yxp &wiode eouy 1 AB 1 AE, plo atdtedv peilov
éotiv. ot pellov 1 AB, nod neloSw ™ AE fon 7 BH,
not éneledydw 1 HI

‘Emel obv fon éotiv ] pév BH 17 AE, 1 8¢ BL 17
EZ, 8%0 &% ot BH, BI" Sval toic AE, EZ {oou eiolv
enatépo Enatépa ual ywvior 1 dmo HBIL' ywvie 7] Omo
AEZ Yo éotiv Baorg &pa 1 HI' Baoet 1 AZ Ton éotly,
nol 10 HBI tpiywvoy 1@ AEZ tprywve Toov éotiv, xat ol
howmod ywvia todg Aotnadg yoviong foot Eoovtar, Dy &g ol
foog mhevpai broteivovoy: Ton &pa 1) O1o HI'B ywvio
omo AZE. &\& 1 omd AZE 17} dno BI'A dndxeiton {on
nol 1 010 BI'H &po 17 0o BI'A Ton €otiy, | éhdoowy
) peilovt Smep &Svvatov. odx &pa &viodg éoty 1) AB
) AE. Ton &pa. Eou 8¢ not 1) BI' 19 EZ Ton® 8%o o1 ol
AB, BI" dvot taic AE, EZ Yoo slolv énatépo exatépy
not yoviee 1) 0no ABIT ywvig ) 0no AEZ éouv fon
Béorc &po | AL Béoet 17] AZ Ton éotiv, not Aotmi| Ywvio
7 omo BAL 1 Ao} yovie 7 dno EAZ Tor éotiv.

AN B méhv Eotwooy ol OO thg foog ywviog
nhevpot drotelvovoor Toat, &g 1] AB 1 AE- Aéyw mdhry,
0Tt nod ol Aotmal TAevpol TG AOLMOdC MAELEXIC Towg
goovtan, 1) wev Al 1] AZ, 1 8¢ BI' 1 EZ nod 2u 7
Aoy yovie 1 0nd BAL 17} howny] ywvie 17 Ond EAZ
for éotiv.

Ei yap &viodg éouv 1 BI' 17 EZ, plo adtidv peileov
gotiv. Eotw pellov, et duvatdy, 1 BT, xal xeioSw 7 EZ
fon 11 BO, nat éneledydw 1) AO. xod énét for éotiv 1] pev
BO®  EZ % 8¢ AB 13 AE, 8bo 81 ai AB, BO dvat
toig AE, EZ Toot eloly énatépa exapépar nal yoving foog
neptéyovoy Biotg &pa 1 A® B&oet ) AZ Ton Eotly, nod
0 AB® tpiywvov 1@ AEZ tprydve Toov éotly, xol at
lowmaldl ywviow todg Aownads yovioug foon Ecovton, by’ &g
ot {oag mhevpot broteivovoy” Ton &pa éotlv 1 bnd BOA

and EFD, respectively. (That is) ABC to DEF, and
BCA to EFD. And let them also have one side equal
to one side. First of all, the (side) by the equal angles.
(That is) BC' (equal) to E'F. I say that the remaining
sides will be equal to the corresponding remaining sides.
(That is) AB to DFE, and AC to DF. And the remaining
angle (will be equal) to the remaining angle. (That is)
BAC to EDF.

D
A
G

E F

B g C

For if AB is unequal to DFE then one of them is
greater. Let AB be greater, and let BG be made equal
to DE [Prop. 1.3], and let GC have been joined.

Therefore, since BG is equal to DFE, and BC to EF,
the two (straight-lines) GB, BCT are equal to the two
(straight-lines) DE, E'F, respectively. And angle GBC is
equal to angle DEF'. Thus, the base GC is equal to the
base DF, and triangle GBC is equal to triangle DEF,
and the remaining angles subtended by the equal sides
will be equal to the (corresponding) remaining angles
[Prop. 1.4]. Thus, GCB (is equal) to DF'E. But, DF'E
was assumed (to be) equal to BCA. Thus, BCG is also
equal to BC'A, the lesser to the greater. The very thing
(is) impossible. Thus, AB is not unequal to DE. Thus,
(it is) equal. And BC is also equal to EF. So the two
(straight-lines) AB, BC are equal to the two (straight-
lines) DE, EF, respectively. And angle ABC is equal to
angle DEF'. Thus, the base AC is equal to the base DF,
and the remaining angle BAC is equal to the remaining
angle EDF [Prop. 1.4].

But, again, let the sides subtending the equal angles
be equal: for instance, (let) AB (be equal) to DE. Again,
I say that the remaining sides will be equal to the remain-
ing sides. (That is) AC to DF, and BC to EF. Further-
more, the remaining angle BAC is equal to the remaining
angle EDF.

For if BC is unequal to EF then one of them is
greater. If possible, let BC be greater. And let BH be
made equal to FF [Prop. 1.3], and let AH have been
joined. And since BH is equal to EF, and AB to DF,
the two (straight-lines) AB, BH are equal to the two
(straight-lines) DE, EF, respectively. And the angles
they encompass (are also equal). Thus, the base AH is
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equal to the base DF, and the triangle ABH is equal to
the triangle DEF, and the remaining angles subtended
by the equal sides will be equal to the (corresponding)
remaining angles [Prop. 1.4]. Thus, angle BH A is equal
to EFD. But, EFD is equal to BCA. So, for triangle
AHC, the external angle BH A is equal to the internal
and opposite angle BCA. The very thing (is) impossi-
ble [Prop. 1.16]. Thus, BC is not unequal to E'F. Thus,
(it is) equal. And AB is also equal to DE. So the two
(straight-lines) AB, BC are equal to the two (straight-
lines) DE, EF, respectively. And they encompass equal
angles. Thus, the base AC is equal to the base DF, and
triangle ABC (is) equal to triangle DEF, and the re-
maining angle BAC (is) equal to the remaining angle
EDF [Prop. 1.4].

Thus, if two triangles have two angles equal to two
angles, respectively, and one side equal to one side—in
fact, either that by the equal angles, or that subtending
one of the equal angles—then (the triangles) will also
have the remaining sides equal to the (corresponding) re-
maining sides, and the remaining angle (equal) to the re-
maining angle. (Which is) the very thing it was required
to show.

Proposition 27

If a straight-line falling across two straight-lines
makes the alternate angles equal to one another then
the (two) straight-lines will be parallel to one another.

C F D

For let the straight-line EF, falling across the two
straight-lines AB and C'D, make the alternate angles
AEF and EF D equal to one another. I say that AB and
CD are parallel.

For if not, being produced, AB and C D will certainly
meet together: either in the direction of B and D, or (in
the direction) of A and C [Def. 1.23]. Let them have
been produced, and let them meet together in the di-
rection of B and D at (point) G. So, for the triangle
GEF, the external angle AEF is equal to the interior
and opposite (angle) EF'G. The very thing is impossible
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[Prop. 1.16]. Thus, being produced, AB and DC will not
meet together in the direction of B and D. Similarly, it
can be shown that neither (will they meet together) in
(the direction of) A and C. But (straight-lines) meeting
in neither direction are parallel [Def. 1.23]. Thus, AB
and CD are parallel.

Thus, if a straight-line falling across two straight-lines
makes the alternate angles equal to one another then
the (two) straight-lines will be parallel (to one another).
(Which is) the very thing it was required to show.

Proposition 28

If a straight-line falling across two straight-lines
makes the external angle equal to the internal and oppo-
site angle on the same side, or (makes) the (sum of the)
internal (angles) on the same side equal to two right-
angles, then the (two) straight-lines will be parallel to
one another.

E

F

For let EF, falling across the two straight-lines AB
and CD, make the external angle FGB equal to the in-
ternal and opposite angle GH D, or the (sum of the) in-
ternal (angles) on the same side, BGH and GH D, equal
to two right-angles. I say that AB is parallel to C'D.

For since (in the first case) EGB is equal to GH D, but
EGB is equal to AGH [Prop. 1.15], AGH is thus also
equal to GHD. And they are alternate (angles). Thus,
AB is parallel to C'D [Prop. 1.27].

Again, since (in the second case, the sum of) BGH
and GHD is equal to two right-angles, and (the sum
of) AGH and BGH is also equal to two right-angles
[Prop. 1.13], (the sum of) AGH and BGH is thus equal
to (the sum of) BGH and GHD. Let BGH have been
subtracted from both. Thus, the remainder AGH is equal
to the remainder GH D. And they are alternate (angles).
Thus, AB is parallel to CD [Prop. 1.27].

Thus, if a straight-line falling across two straight-lines
makes the external angle equal to the internal and oppo-
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site angle on the same side, or (makes) the (sum of the)
internal (angles) on the same side equal to two right-
angles, then the (two) straight-lines will be parallel (to
one another). (Which is) the very thing it was required
to show.

Proposition 29

A straight-line falling across parallel straight-lines
makes the alternate angles equal to one another, the ex-
ternal (angle) equal to the internal and opposite (angle),
and the (sum of the) internal (angles) on the same side
equal to two right-angles.

E

F

For let the straight-line E'F fall across the parallel
straight-lines AB and CD. I say that it makes the alter-
nate angles, AGH and GH D, equal, the external angle
EGB equal to the internal and opposite (angle) GHD,
and the (sum of the) internal (angles) on the same side,
BGH and GHD, equal to two right-angles.

For if AGH is unequal to GHD then one of them is
greater. Let AGH be greater. Let BGH have been added
to both. Thus, (the sum of) AGH and BGH is greater
than (the sum of) BGH and GHD. But, (the sum of)
AGH and BGH is equal to two right-angles [Prop 1.13].
Thus, (the sum of) BGH and GHD is [also] less than
two right-angles. But (straight-lines) being produced to
infinity from (internal angles whose sum is) less than two
right-angles meet together [Post. 5]. Thus, AB and CD,
being produced to infinity, will meet together. But they do
not meet, on account of them (initially) being assumed
parallel (to one another) [Def. 1.23]. Thus, AGH is not
unequal to GH D. Thus, (it is) equal. But, AGH is equal
to EGB [Prop. 1.15]. And EGB is thus also equal to
GHD. Let BGH be added to both. Thus, (the sum of)
EGB and BGH is equal to (the sum of) BGH and GHD.

H &pa eig 1&g noporinioug eddelog edIeto epnintovon But, (the sum of) EGB and BGH is equal to two right-

Tée T8 Evol&E Ywviag Toug dAAhoug TOLET ol THY ExTog

angles [Prop. 1.13]. Thus, (the sum of) BGH and GHD
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is also equal to two right-angles.

Thus, a straight-line falling across parallel straight-
lines makes the alternate angles equal to one another, the
external (angle) equal to the internal and opposite (an-
gle), and the (sum of the) internal (angles) on the same
side equal to two right-angles. (Which is) the very thing
it was required to show.

Proposition 30

(Straight-lines) parallel to the same straight-line are
also parallel to one another.

A G/ B

C K D

/

Let each of the (straight-lines) AB and C'D be parallel
to EF. I say that AB is also parallel to CD.

For let the straight-line GK fall across (AB, CD, and
EF).

And since GK has fallen across the parallel straight-
lines AB and EF, (angle) AGK (is) thus equal to GHF
[Prop. 1.29]. Again, since GK has fallen across the par-
allel straight-lines EF and C'D, (angle) GHF is equal to
GKD [Prop. 1.29]. But AGK was also shown (to be)
equal to GHF. Thus, AGK is also equal to GK D. And
they are alternate (angles). Thus, AB is parallel to CD
[Prop. 1.27].

[Thus, (straight-lines) parallel to the same straight-
line are also parallel to one another.] (Which is) the very
thing it was required to show.

Proposition 31

To draw a straight-line parallel to a given straight-line,
through a given point.

Let A be the given point, and BC the given straight-
line. So it is required to draw a straight-line parallel to
the straight-line BC, through the point A.

Let the point D have been taken somewhere on BC,
and let AD have been joined. And let (angle) DAF,
equal to angle ADC, have been constructed at the point
A on the straight-line DA [Prop. 1.23]. And let the
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straight-line AF' have been produced in a straight-line
with EA.
A

E F

B C
D

And since the straight-line AD, (in) falling across the
two straight-lines BC' and E'F, has made the alternate
angles FAD and ADC equal to one another, EAF is thus
parallel to BC [Prop. 1.27].

Thus, the straight-line FAF has been drawn parallel
to the given straight-line BC, through the given point A.
(Which is) the very thing it was required to do.

Proposition 32

For any triangle, (if) one of the sides (is) produced
(then) the external angle is equal to the (sum of the) two
internal and opposite (angles), and the (sum of the) three
internal angles of the triangle is equal to two right-angles.

A E

B C D

Let ABC be a triangle, and let one of its sides BC'
have been produced to D. I say that the external angle
ACD is equal to the (sum of the) two internal and oppo-
site angles CAB and ABC, and the (sum of the) three
internal angles of the triangle—ABC, BC' A, and CAB—
is equal to two right-angles.

For let CE have been drawn through point C' parallel
to the straight-line AB [Prop. 1.31].

And since AB is parallel to CFE, and AC has fallen
across them, the alternate angles BAC and ACE are
equal to one another [Prop. 1.29]. Again, since AB is
parallel to C'E, and the straight-line BD has fallen across
them, the external angle ECD is equal to the internal
and opposite (angle) ABC [Prop. 1.29]. But ACE was
also shown (to be) equal to BAC. Thus, the whole an-
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gle ACD is equal to the (sum of the) two internal and
opposite (angles) BAC and ABC.

Let ACB have been added to both. Thus, (the sum
of) ACD and ACB is equal to the (sum of the) three
(angles) ABC, BCA, and C AB. But, (the sum of) ACD
and ACB is equal to two right-angles [Prop. 1.13]. Thus,
(the sum of) ACB, CBA, and CAB is also equal to two
right-angles.

Thus, for any triangle, (if) one of the sides (is) pro-
duced (then) the external angle is equal to the (sum of
the) two internal and opposite (angles), and the (sum of
the) three internal angles of the triangle is equal to two
right-angles. (Which is) the very thing it was required to
show.

Proposition 33

Straight-lines joining equal and parallel (straight-
lines) on the same sides are themselves also equal and

parallel.
B A

D C

Let AB and C'D be equal and parallel (straight-lines),
and let the straight-lines AC' and BD join them on the
same sides. I say that AC and BD are also equal and
parallel.

Let BC have been joined. And since AB is parallel to
CD, and BC has fallen across them, the alternate angles
ABC and BCD are equal to one another [Prop. 1.29].
And since AB and CD are equal, and BC is common,
the two (straight-lines) AB, BC are equal to the two
(straight-lines) DC, CB.TAnd the angle ABC is equal to
the angle BC'D. Thus, the base AC is equal to the base
BD, and triangle ABC is equal to triangle AC' D, and the
remaining angles will be equal to the corresponding re-
maining angles subtended by the equal sides [Prop. 1.4].
Thus, angle ACB is equal to CBD. Also, since the
straight-line BC, (in) falling across the two straight-lines
AC and BD, has made the alternate angles (ACB and
CBD) equal to one another, AC is thus parallel to BD
[Prop. 1.27]. And (AC) was also shown (to be) equal to
(BD).

Thus, straight-lines joining equal and parallel (straight-

35



YTOIXEIQN o'

ELEMENTS BOOK 1

t The Greek text has “BC, C'D”, which is obviously a mistake.
AS'.

T&v  TmorpaAAnAoypdupwy ywoelwv ol

nhevpai 1wl ywvior Toor dAARloug  eioly,

Sigpetpog obtd Blyor Tépvet.

A B

&mevavTtiov
nol 1

r A

"Eotw noepodAnhoypappov ywplov 10 AIAB, Siépet-
poc 8¢ adtob 7 BI™ Aéyw, &t 100 AI'AB mapoddn-
Loypaupov ol &mevavtiov mAevpal Te Mol Ywvio ool
aMNhag eioty, xat 1 BI' Sidpetpog adto Siyar tépvet.

‘Emel y&p mopdhiniée oty 1 AB 1) T'A, xal eig
adTdg épméntwney ebdelar 1) BL, af dvadldag yovidt ol O
ABI', BI'A Yoot &AAAhoug elotv. méhv émel nopdAAnAog
gotwv 1 Al 1 BA, xat elg adtac gpnéntonsy 1 BI, al
EvolXE ywviow of 0o AL'B, I'BA Toug dAAnlotg eiotv.
dvo &N tpiywvé éott e ABIY, BI'A 1&g 860 ywviog tég
omo ABIT, BI'A Svot toic dmo BI'A, I'BA Toog Eyovia
enatépay Enxtépa xal ploy TAELEXV WE TAELEX oMV
™V TPOG TolC Toog ywviong xowiy adt@dy v BI™ nod
TG AOITAG &par TAELPAS TAlg Aotmols Toog E€et Enatépay
enatépy %ol Ty Aoty ywviay ) Aoty ywvia Ton &po
N wév AB mhevpd 1R I'A, 1 8¢ AL 17 BA, xal Eu fom
éottv 7 Omo BAT™ yovie 17 dno I'AB. sat énel Ton gotiv
7 pev O0mo ABI™ ywvie 17 dno BI'A, ) 8¢ dno I'BA 7
ono AI'B, 6An &po 1 Ono ABA Sk 17 bno AL'A éotwy
o). édeiy9n 8¢ not 1) Ond BAIL™ 17 Omo I'AB Tor.

T&v &pa TapoIANAOYPEUUWY YwElwy ol &revevtiov
nhevpai e ol ywviot foow dAAAloug slotv.

Aéyw 87, S nal 7 Sdpetpog adTd Siyor tépvel. émet
y&p fon éotiv 11 AB ) I'A, »owi 8¢ 7 BI', dbo o ol
AB, BI' dvat tatc I'A, BI' Toou eiotv éxatépa exatépa
nol yovie 7 010 ABL ywvia 7] 010 BI'A Ton. st Béotg
&oo 1 AI' T AB Ton. nod 10 ABI [&pa] Ttplywvoy 16
BI'A tptryove Toov éotiv.

‘H &pa BI' Sidpetpog Siya tépver 10 ABT'A mopok -
IASypappov Enep Edet Setéo.

lines) on the same sides are themselves also equal and
parallel. (Which is) the very thing it was required to
show.

Proposition 34

For parallelogrammic figures, the opposite sides and an-
gles are equal to one another, and a diagonal cuts them
in half.

A B

C D

Let ACDB be a parallelogrammic figure, and BC its
diagonal. I say that for parallelogram ACD B, the oppo-
site sides and angles are equal to one another, and the
diagonal BC cuts it in half.

For since AB is parallel to CD, and the straight-line
BC has fallen across them, the alternate angles ABC and
BCD are equal to one another [Prop. 1.29]. Again, since
AC is parallel to BD, and BC has fallen across them, the
alternate angles AC'B and C' BD are equal to one another
[Prop. 1.29]. So ABC and BCD are two triangles having
the two angles ABC and BC'A equal to the two (angles)
BCD and CBD, respectively, and one side equal to one
side—the (one) common to the equal angles, (namely)
BC. Thus, they will also have the remaining sides equal
to the corresponding remaining (sides), and the remain-
ing angle (equal) to the remaining angle [Prop. 1.26].
Thus, side AB is equal to CD, and AC to BD. Fur-
thermore, angle BAC' is equal to CDB. And since angle
ABC is equal to BCD, and CBD to ACB, the whole
(angle) ABD is thus equal to the whole (angle) ACD.
And BAC was also shown (to be) equal to CDB.

Thus, for parallelogrammic figures, the opposite sides
and angles are equal to one another.

And, I also say that a diagonal cuts them in half. For
since AB is equal to CD, and BC (is) common, the two
(straight-lines) AB, BC' are equal to the two (straight-
lines) DC, CB', respectively. And angle ABC is equal
to angle BC'D. Thus, the base AC (is) also equal to DB
[Prop. 1.4]. Also, triangle ABC is equal to triangle BC D
[Prop. 1.4].
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t The Greek text has “C'D, BC”, which is obviously a mistake.
t The Greek text has “ABC D", which is obviously a mistake.
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Thus, the diagonal BC cuts the parallelogram AC'D B*
in half. (Which is) the very thing it was required to show.

Proposition 35

Parallelograms which are on the same base and be-
tween the same parallels are equal’ to one another.

A D E F
\M
B C

Let ABCD and EBCF be parallelograms on the same
base BC, and between the same parallels AF' and BC. [
say that ABC'D is equal to parallelogram EBCF'.

For since ABCD is a parallelogram, AD is equal to
BC [Prop. 1.34]. So, for the same (reasons), EF is also
equal to BC. So AD is also equal to EF. And DE is
common. Thus, the whole (straight-line) AF is equal to
the whole (straight-line) DF. And AB is also equal to
DC. So the two (straight-lines) KA, AB are equal to
the two (straight-lines) F'D, DC, respectively. And angle
FDC is equal to angle EAB, the external to the inter-
nal [Prop. 1.29]. Thus, the base E B is equal to the base
FC, and triangle EAB will be equal to triangle DFC
[Prop. 1.4]. Let DGFE have been taken away from both.
Thus, the remaining trapezium ABGD is equal to the re-
maining trapezium EGCF. Let triangle GBC have been
added to both. Thus, the whole parallelogram ABCD is
equal to the whole parallelogram EBCF'.

Thus, parallelograms which are on the same base and
between the same parallels are equal to one another.
(Which is) the very thing it was required to show.

T Here, for the first time, “equal” means “equal in area”, rather than “congruent”.

Nl

T noepadinhoypappa & émt fowv Bdoswy Gvtor nol
&v talg adtalc mopoahhiniolg foo dAANAoLg gotiv.

"Eotw napadinioypoppn o ABI'A, EZH® éni
fowv B&oewv Svtoe v BT, ZH nod év toig adtodc moe-
parinhotg tate A®, BH' Méyw, &t Toov éott 10 ABI'A
noaparAnioypappov 1 EZHO.

Proposition 36

Parallelograms which are on equal bases and between
the same parallels are equal to one another.

Let ABCD and EFGH be parallelograms which are
on the equal bases BC and F'G, and (are) between the
same parallels AH and BG. I say that the parallelogram
ABCD isequal to EFGH.
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B C F G

For let BE and C'H have been joined. And since
BC and FG are equal, but FG and EH are equal
[Prop. 1.34], BC and EH are thus also equal. And
they are also parallel, and £FB and HC join them. But
(straight-lines) joining equal and parallel (straight-lines)
on the same sides are (themselves) equal and parallel
[Prop. 1.33] [thus, EB and HC are also equal and par-
allel]. Thus, EBCH is a parallelogram [Prop. 1.34], and
is equal to ABCD. For it has the same base, BC, as
(ABCD), and is between the same parallels, BC' and
AH, as (ABCD) [Prop. 1.35]. So, for the same (rea-
sons), EFGH is also equal to the same (parallelogram)
EBCH [Prop. 1.34]. So that the parallelogram ABCD
is also equal to EFGH.

Thus, parallelograms which are on equal bases and

between the same parallels are equal to one another.
(Which is) the very thing it was required to show.

Proposition 37

Triangles which are on the same base and between
the same parallels are equal to one another.

B A D P

B C

Let ABC and D BC be triangles on the same base BC,
and between the same parallels AD and BC. I say that
triangle ABC'is equal to triangle DBC.

Let AD have been produced in each direction to FE
and F, and let the (straight-line) BFE have been drawn
through B parallel to CA [Prop. 1.31], and let the
(straight-line) C'F' have been drawn through C parallel
to BD [Prop. 1.31]. Thus, EBCA and DBCF are both
parallelograms, and are equal. For they are on the same
base BC, and between the same parallels BC and EF
[Prop. 1.35]. And the triangle ABC is half of the paral-
lelogram EFBCA. For the diagonal AB cuts the latter in
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half [Prop. 1.34]. And the triangle DBC' (is) half of the
parallelogram DBCF'. For the diagonal DC cuts the lat-
ter in half [Prop. 1.34]. [And the halves of equal things
are equal to one another.]’ Thus, triangle ABC is equal
to triangle DBC.

Thus, triangles which are on the same base and
between the same parallels are equal to one another.
(Which is) the very thing it was required to show.

Proposition 38

Triangles which are on equal bases and between the
same parallels are equal to one another.

G A D H

B C E F

Let ABC and DEF be triangles on the equal bases
BC and EF, and between the same parallels BF' and
AD. 1say that triangle ABC is equal to triangle DEF.

For let AD have been produced in each direction
to G and H, and let the (straight-line) BG have been
drawn through B parallel to C'A [Prop. 1.31], and let the
(straight-line) F'H have been drawn through F parallel
to DE [Prop. 1.31]. Thus, GBCA and DEF H are each
parallelograms. And GBC A is equal to DEF H. For they
are on the equal bases BC and EF, and between the
same parallels BF' and GH [Prop. 1.36]. And triangle
ABC is half of the parallelogram GBC A. For the diago-
nal AB cuts the latter in half [Prop. 1.34]. And triangle
FED (is) half of parallelogram DEF H. For the diagonal
DF cuts the latter in half. [And the halves of equal things
are equal to one another]. Thus, triangle ABC is equal
to triangle DEF'.

Thus, triangles which are on equal bases and between
the same parallels are equal to one another. (Which is)
the very thing it was required to show.

Proposition 39

Equal triangles which are on the same base, and on
the same side, are also between the same parallels.

Let ABC and DBC be equal triangles which are on
the same base BC, and on the same side. I say that they
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are also between the same parallels.
N
B C

For let AD have been joined. I say that AD and AC
are parallel.

For, if not, let AE have been drawn through point A
parallel to the straight-line BC' [Prop. 1.31], and let EC
have been joined. Thus, triangle ABC is equal to triangle
EBC. For it is on the same base as it, BC, and between
the same parallels [Prop. 1.37]. But ABC is equal to
DBC. Thus, DBC is also equal to EBC, the greater to
the lesser. The very thing is impossible. Thus, AF is not
parallel to BC. Similarly, we can show that neither (is)
any other (straight-line) than AD. Thus, AD is parallel
to BC.

Thus, equal triangles which are on the same base, and

on the same side, are also between the same parallels.
(Which is) the very thing it was required to show.

Proposition 407

Equal triangles which are on equal bases, and on the
same side, are also between the same parallels.

A D

B C E

Let ABC and CDE be equal triangles on the equal
bases BC and C'E (respectively), and on the same side. I
say that they are also between the same parallels.

For let AD have been joined. I say that AD is parallel
to BE.

For if not, let AF have been drawn through A parallel
to BE [Prop. 1.31], and let FE have been joined. Thus,
triangle ABC' is equal to triangle FCE. For they are on
equal bases, BC' and CF, and between the same paral-
lels, BE and AF [Prop. 1.38]. But, triangle ABC is equal
to [triangle] DCE. Thus, [triangle] DCF is also equal to
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triangle F'CFE, the greater to the lesser. The very thing is
impossible. Thus, AF' is not parallel to BE. Similarly, we
can show that neither (is) any other (straight-line) than
AD. Thus, AD is parallel to BE.

Thus, equal triangles which are on equal bases, and
on the same side, are also between the same parallels.
(Which is) the very thing it was required to show.

T This whole proposition is regarded by Heiberg as a relatively early interpolation to the original text.
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Proposition 41

If a parallelogram has the same base as a triangle, and
is between the same parallels, then the parallelogram is
double (the area) of the triangle.

A D E

B C

For let parallelogram ABC D have the same base BC'
as triangle EBC, and let it be between the same parallels,
BC and AE. 1 say that parallelogram ABCD is double
(the area) of triangle BEC.

For let AC have been joined. So triangle ABC' is equal
to triangle EBC. For it is on the same base, BC, as
(EBC), and between the same parallels, BC and AFE
[Prop. 1.37]. But, parallelogram ABCD is double (the
area) of triangle ABC'. For the diagonal AC cuts the for-
mer in half [Prop. 1.34]. So parallelogram ABCD is also
double (the area) of triangle EBC.

Thus, if a parallelogram has the same base as a trian-
gle, and is between the same parallels, then the parallel-
ogram is double (the area) of the triangle. (Which is) the
very thing it was required to show.

Proposition 42

To construct a parallelogram equal to a given triangle
in a given rectilinear angle.

Let ABC be the given triangle, and D the given recti-
linear angle. So it is required to construct a parallelogram
equal to triangle ABC in the rectilinear angle D.
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Let BC have been cut in half at £ [Prop. 1.10], and
let AE have been joined. And let (angle) CEF, equal to
angle D, have been constructed at the point F on the
straight-line FC' [Prop. 1.23]. And let AG have been
drawn through A parallel to EC [Prop. 1.31], and let CG
have been drawn through C parallel to EF [Prop. 1.31].
Thus, FECG is a parallelogram. And since BF is equal
to EC, triangle ABF is also equal to triangle AEC. For
they are on the equal bases, BE and EC, and between
the same parallels, BC and AG [Prop. 1.38]. Thus, tri-
angle ABC' is double (the area) of triangle AEC. And
parallelogram FECG is also double (the area) of triangle
AEC. For it has the same base as (AEC), and is between
the same parallels as (AEC) [Prop. 1.41]. Thus, paral-
lelogram F'ECG is equal to triangle ABC. (FECG) also
has the angle CEF equal to the given (angle) D.

Thus, parallelogram FECG, equal to the given trian-
gle ABC, has been constructed in the angle CEF, which
is equal to D. (Which is) the very thing it was required
to do.

Proposition 43

For any parallelogram, the complements of the paral-
lelograms about the diagonal are equal to one another.

Let ABCD be a parallelogram, and AC its diagonal.
And let EH and FG be the parallelograms about AC, and
BK and K D the so-called complements (about AC). I
say that the complement BK is equal to the complement
KD.

For since ABC D is a parallelogram, and AC its diago-
nal, triangle ABC'is equal to triangle ACD [Prop. 1.34].
Again, since F'H is a parallelogram, and AK is its diago-
nal, triangle AEK is equal to triangle AH K [Prop. 1.34].
So, for the same (reasons), triangle K F'C is also equal to
(triangle) KGC'. Therefore, since triangle AEK is equal
to triangle AH K, and K F'C to KGC, triangle AEK plus
KGC is equal to triangle AHK plus KFC. And the
whole triangle ABC is also equal to the whole (triangle)
ADC'. Thus, the remaining complement BK is equal to
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B G C

Thus, for any parallelogramic figure, the comple-
ments of the parallelograms about the diagonal are equal
to one another. (Which is) the very thing it was required
to show.

Proposition 44

To apply a parallelogram equal to a given triangle to
a given straight-line in a given rectilinear angle.

ﬁ ;

[

K

B
H A

Let AB be the given straight-line, C' the given trian-
gle, and D the given rectilinear angle. So it is required
to apply a parallelogram equal to the given triangle C to
the given straight-line AB in an angle equal to D.

Let the parallelogram BEFG, equal to the triangle C,
have been constructed in the angle EBG, which is equal
to D [Prop. 1.42]. And let it have been placed so that
BE is straight-on to AB.T And let FG have been drawn
through to H, and let AH have been drawn through A
parallel to either of BG or EF' [Prop. 1.31], and let HB
have been joined. And since the straight-line HF falls
across the parallel-lines AH and EF, the (sum of the)
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foov TopadAnAoypappov 1o ZO év 17 tmo OKZ ywvig,
N éotwv Ton 1 B sl nopaBefinode nmopx v HO

angles AHF and HF'F is thus equal to two right-angles
[Prop. 1.29]. Thus, (the sum of) BHG and GF'E is less
than two right-angles. And (straight-lines) produced to
infinity from (internal angles whose sum is) less than two
right-angles meet together [Post. 5]. Thus, being pro-
duced, HB and F'F will meet together. Let them have
been produced, and let them meet together at K. And let
KL have been drawn through point K parallel to either
of FA or FH [Prop. 1.31]. And let HA and GB have
been produced to points L and M (respectively). Thus,
HLKF is a parallelogram, and HK its diagonal. And
AG and M FE (are) parallelograms, and LB and BF the
so-called complements, about H K. Thus, LB is equal to
BF [Prop. 1.43]. But, BF is equal to triangle C. Thus,
LB is also equal to C. Also, since angle GBE is equal to
ABM [Prop. 1.15], but GBE is equal to D, ABM is thus
also equal to angle D.

Thus, the parallelogram LB, equal to the given trian-
gle C, has been applied to the given straight-line AB in
the angle ABM, which is equal to D. (Which is) the very
thing it was required to do.

Proposition 45

To construct a parallelogram equal to a given rectilin-
ear figure in a given rectilinear angle.

D
C
A
E
B
/ | /G / |
K H M
Let ABCD be the given rectilinear figure," and E the
given rectilinear angle. So it is required to construct a
parallelogram equal to the rectilinear figure ABCD in
the given angle F.
Let DB have been joined, and let the parallelogram

FH, equal to the triangle ABD, have been constructed in
the angle H K'F', which is equal to £ [Prop. 1.42]. And let
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IAoypappov ovvéotatar 0 KZAM év ywvie ) Omo
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the parallelogram G M, equal to the triangle DBC, have
been applied to the straight-line GH in the angle GH M,
which is equal to £ [Prop. 1.44]. And since angle FE is
equal to each of (angles) HK F'and GHM, (angle) HK F
is thus also equal to GH M. Let K HG have been added to
both. Thus, (the sum of) FK H and K HG is equal to (the
sum of) KHG and GHM. But, (the sum of) FFK H and
KHG is equal to two right-angles [Prop. 1.29]. Thus,
(the sum of) K HG and GH M is also equal to two right-
angles. So two straight-lines, K H and HM, not lying
on the same side, make the (sum of the) adjacent angles
equal to two right-angles at the point H on some straight-
line GH. Thus, KH is straight-on to HM [Prop. 1.14].
And since the straight-line HG falls across the parallel-
lines KM and FG, the alternate angles M HG and HGF
are equal to one another [Prop. 1.29]. Let HGL have
been added to both. Thus, (the sum of) M HG and HGL
is equal to (the sum of) HGF and HGL. But, (the
sum of) MHG and HGL is equal to two right-angles
[Prop. 1.29]. Thus, (the sum of) HGF and HGL is also
equal to two right-angles. Thus, FG is straight-on to GL
[Prop. 1.14]. And since FK is equal and parallel to HG
[Prop. 1.34], but also HG to ML [Prop. 1.34], KF is
thus also equal and parallel to M L [Prop. 1.30]. And
the straight-lines K M and F' L join them. Thus, K M and
FL are equal and parallel as well [Prop. 1.33]. Thus,
KFLM is a parallelogram. And since triangle ABD is
equal to parallelogram F'H, and DBC to GM, the whole
rectilinear figure ABCD is thus equal to the whole par-
allelogram K FLM.

Thus, the parallelogram K FLM, equal to the given
rectilinear figure ABC D, has been constructed in the an-
gle F'K M, which is equal to the given (angle) F. (Which
is) the very thing it was required to do.

 The proof is only given for a four-sided figure. However, the extension to many-sided figures is trivial.

b
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éotiv 1 uev AB ] AE, 7 88 AA 17 BE. &\Ai& 11 AB 1
AA éonv Ton al éoonpeg &po of BA, AA, AE, EB foo
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ei¢ mopodroug g AB, AE edele événeoev 7| AA,

Proposition 46

To describe a square on a given straight-line.

Let AB be the given straight-line. So it is required to
describe a square on the straight-line AB.

Let AC have been drawn at right-angles to the
straight-line AB from the point A on it [Prop. 1.11],
and let AD have been made equal to AB [Prop. 1.3].
And let DF have been drawn through point D parallel to
AB [Prop. 1.31], and let BE have been drawn through
point B parallel to AD [Prop. 1.31]. Thus, ADEB is
a parallelogram. Thus, AB is equal to DE, and AD to
BE [Prop. 1.34]. But, AB is equal to AD. Thus, the
four (sides) BA, AD, DE, and EB are equal to one an-
other. Thus, the parallelogram ADEB is equilateral. So
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I say that (it is) also right-angled. For since the straight-
line AD falls across the parallel-lines AB and DF, the
(sum of the) angles BAD and ADF is equal to two right-
angles [Prop. 1.29]. But BAD (is a) right-angle. Thus,
ADE (is) also a right-angle. And for parallelogrammic
figures, the opposite sides and angles are equal to one
another [Prop. 1.34]. Thus, each of the opposite angles
ABFE and BED (are) also right-angles. Thus, ADEDB is
right-angled. And it was also shown (to be) equilateral.

C
D E
A B

Thus, (ADEB) is a square [Def. 1.22]. And it is de-
scribed on the straight-line AB. (Which is) the very thing
it was required to do.

Proposition 47

In a right-angled triangle, the square on the side
subtending the right-angle is equal to the (sum of the)
squares on the sides surrounding the right-angle.

Let ABC be a right-angled triangle having the right-
angle BAC. I say that the square on BC' is equal to the
(sum of the) squares on BA and AC.

For let the square BDEC have been described on
BC, and (the squares) GB and HC on AB and AC
(respectively) [Prop. 1.46]. And let AL have been
drawn through point A parallel to either of BD or CFE
[Prop. 1.31]. And let AD and F'C have been joined. And
since angles BAC and BAG are each right-angles, then
two straight-lines AC' and AG, not lying on the same
side, make the (sum of the) adjacent angles equal to two
right-angles at the same point A on some straight-line
BA . Thus, CA is straight-on to AG [Prop. 1.14]. So, for
the same (reasons), BA is also straight-on to AH. And
since angle DBC is equal to FBA, for (they are) both
right-angles, let ABC have been added to both. Thus,
the whole (angle) DBA is equal to the whole (angle)
FBC. And since DB is equal to BC, and F'B to BA,
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t The Greek text has “F' B, BC”, which is obviously a mistake.

1 This is an additional common notion.

the two (straight-lines) DB, BA are equal to the two
(straight-lines) CB, BF,' respectively. And angle DBA
(is) equal to angle F'BC. Thus, the base AD [is] equal
to the base F'C, and the triangle ABD is equal to the
triangle F'BC [Prop. 1.4]. And parallelogram BL [is]
double (the area) of triangle ABD. For they have the
same base, BD, and are between the same parallels, BD
and AL [Prop. 1.41]. And parallelogram G B is double
(the area) of triangle FBC. For again they have the
same base, F'B, and are between the same parallels, F'B
and GC [Prop. 1.41]. [And the doubles of equal things
are equal to one another.]* Thus, the parallelogram BL
is also equal to the square GB. So, similarly, AE and
BK being joined, the parallelogram CL can be shown
(to be) equal to the square HC'. Thus, the whole square
BDEC is equal to the (sum of the) two squares GB and
HC. And the square BDEC is described on BC, and
the (squares) GB and HC on BA and AC (respectively).
Thus, the square on the side BC is equal to the (sum of
the) squares on the sides BA and AC.
H

D L E
Thus, in a right-angled triangle, the square on the
side subtending the right-angle is equal to the (sum of
the) squares on the sides surrounding the right-[angle].
(Which is) the very thing it was required to show.
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Proposition 48

If the square on one of the sides of a triangle is equal
to the (sum of the) squares on the remaining sides of the
triangle then the angle contained by the remaining sides
of the triangle is a right-angle.

C

D A B

For let the square on one of the sides, BC, of triangle
ABC be equal to the (sum of the) squares on the sides
BA and AC. I say that angle BAC is a right-angle.

For let AD have been drawn from point A at right-
angles to the straight-line AC' [Prop. 1.11], and let AD
have been made equal to BA [Prop. 1.3], and let DC
have been joined. Since DA is equal to AB, the square
on DA is thus also equal to the square on AB.' Let the
square on AC have been added to both. Thus, the (sum
of the) squares on DA and AC is equal to the (sum
of the) squares on BA and AC. But, the (sum of the
squares) on DA and AC is equal to the (square) on DC.
For angle DAC is a right-angle [Prop. 1.47]. But, the
(sum of the squares) on BA and AC is equal to the
(square) on BC. For (that) was assumed. Thus, the
square on DC is equal to the square on BC. So DC is
also equal to BC. And since DA is equal to AB, and AC
(is) common, the two (straight-lines) DA, AC are equal
to the two (straight-lines) BA, AC. And the base DC is
equal to the base BC. Thus, angle DAC [is] equal to
angle BAC' [Prop. 1.8]. But DAC is a right-angle. Thus,
BAC is also a right-angle.

Thus, if the square on one of the sides of a triangle is
equal to the (sum of the) squares on the remaining sides
of the triangle then the angle contained by the remaining
sides of the triangle is a right-angle. (Which is) the very
thing it was required to show.

 Here, use is made of the additional common notion that the squares of equal things are themselves equal. Later on, the inverse notion is used.
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ABBREVIATIONS: act - active; adj - adjective; adv - adverb; conj
- conjunction; fut - future; gen - genitive; imperat - imperative;
impf - imperfect; ind - indeclinable; indic - indicative; intr - in-
transitive; mid - middle; neut - neuter; no - noun; par - particle;
part - participle; pass - passive; perf - perfect; pre - preposition;
pres - present; pro - pronoun; sg - singular; tr - transitive; vb -
verb.

Gyw, &w, Ayayov, -Txo, Nypot, HySnv : vb, lead, draw (a
line).

&dVvatog -ov : adj, impossible.

&ei : adv, always, for ever.

alpéw, aipfow, ethov, Homua, Honpe, Neédnv : vb, grasp.

dtéw, aitow, Nnon, Huo, Hpae, 197 : vb, postulate.

aftmuoe -atog, 16 : no, postulate.

dundhovdog -ov : adj, analogous, consequent on, in conformity
with.

&rpog -a -ov : adj, outermost, end, extreme.

&A\& : conj, but, otherwise.

&loyog -ov : adj, irrational.

&uo : adv, at once, at the same time, together.

&pBluycdviog -ov :
obtuse angle.

adj, obtuse-angled; ©o &pBAivydviov, no,

&pPridc gl -0 @ adj, obtuse.

&ppotepog -a -ov : pro, both (of two).

&vaypdpw : vb, describe (a figure); see ypdpw.
&vohoyla, 1| : no, proportion, (geometric) progression.
&vdhoyog -ov : adj, proportional.

&vérohy @ adv, inverse(ly).

avamAneodw : vb, fill up.

&vaotpépw : vb, turn upside down, convert (ratio); see otpépw.
&vaotpogt], 1| : no, turning upside down, conversion (of ratio).
&viupatpéw : vb, take away in turn; see xipéw.

&viotnut : vb, set up; see iotnpL.

&vioog -ov : adj, unequal, uneven.

&vuméoyw : vb, be reciprocally proportional; see ndoyw.
&fwv -ovog, 6 : vb, axis.

&no€ : adv, once.

&nog, &naoo, &mav @ adj, quite all, the whole.

&netpog -ov : adj, infinite.

&mevavtiov : ind, opposite.

&méyw : vb, be far from, be away from; see Zyw.
&miatng -é¢ : adj, without breadth.

&nodeléic -ewg, 7 : no, proof.

&moxadiotnut : vb, re-establish, restore; see totrp.t.

&mohapBévew : vb, take from, subtract from, cut off from; see
Ao Béve.

dmoTuMpo -otog, O : no, piece cut off, segment.

&motopn, 1 : vb, piece cut off, apotome.

gntw, &, N, —, Hupow, — : vb, touch, join, meet.

&nwtepog -o -ov : adj, further off.

&po : par, thus, as it seems (inferential).

&p3pde, 6 : no, number.

&ptidng : adv, an even number of times.

xpTonhevpog -ov : adj, having a even number of sides.

&pyw, &ptw, ek, Neya, Neypot, Nexdny : vb, rule; mid., be-
gin.

&obppetpog -ov : adj, incommensurable.

&ovpmtwtog -ov : adj, not touching, not meeting.

&ptioc -o -ov : adj, even, perfect.

&tuntoc -ov : adj, uncut.

&témog -ov : adj, absurd, paradoxical.

adtéIev : adv, immediately, obviously.

&poipew : vb, take from, subtract from, cut off from; see aipéw.

&pn, 1 : no, point of contact.

B&Sog -eog, 16 : no, depth, height.

Battvw, -Broopat, -€Bny, BéRnua, —, — : vb, walk; perf, stand
(of angle).

BdAdw, Bk, ERohov, BERANma, BERAnpat, eBANSnv : vb, throw.

Bdotg -ewg, 1| : no, base (of a triangle).

Y&po : conj, for (explanatory).

yilylvopat, yevijoopa, gyevopny, yéyova, yeyévrpo, — : vb, hap-
pen, become.

YYOUWY -0vOog, 7 : no, gnomon.

Yoaxuu#, 1 : no, line.

VP&, Ypdpo, Eypoddfpl, yeypopa, Yéypappo, epahuny 1 vb,
draw (a figure).

ywvia, 7 : no, angle.

8l : vb, be necessary; e, it is necessary; #3st, it was necassary;
Séov, being necessary.

Selnvopt, Seléw, Edetfa, déderyo, déderypot, edelySnyv : vb, show,
demonstrate.
Sewmtdov : ind, one must show.

Setéic -eswg, 1] @ no, proof.

Selyvbpt, deléw, Edetéa, DéSetyer, déBerypat, é8eiyInv : vb, show,
demonstrate.
Sexorywvog -ov : adj, ten-sided; 10 Senayvov, no, decagon.

Séyopa, dé€opant, ede€apny, —, dédeypat, edéySnv : vb, receive,
accept.

87 : conj, so (explanatory).

dnhad7 : ind, quite clear, manifest.

S8Mhog -7 -ov : adj, clear.

dnhovon : adv, manifestly.

Séyw : vb, carry over, draw through, draw across; see &yw.

Sixywwiog -ov : adj, diagonal.
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Swxkelnw : vb, leave an interval between.
S&petpog -ov :
diagonal.

adj, diametrical; 1 Si&petpog, no, diameter,

Swxipeotg -ewg, % : no, division, separation.

Swxtpéw : vb, divide (in two); Swxpedévtog -n -ov, adj, sepa-
rated (ratio); see aipéw.

Stéotpa -atog, 6 : no, radius.

Swxpépw : vb, differ; see pépw.

Sidwt, ddow, Edwna, dé8wna, dédopat, 869y : Vb, give.
Stpoipog -ov : adj, two-thirds.

Stmhaotélw : vb, double.

Sumhdotog -o -ov : adj, double, twofold.
Sumhaotwy -ov : adj, double, twofold.
dumhobc -7 -obv : adj, double.

Sic : adv, twice.

Sty : adv, in two, in half.

Styopopla, 1 : no, point of bisection.

duée -&dog, # : no, the number two, dyad.

Sovapo : vb, be able, be capable, generate, square, be when
squared; Suvopévn, ¥, no, square-root (of area)—ie.,
straight-line whose square is equal to a given area.

Sbvarpug -ewg, % : no, power (usually 2nd power when used in
mathematical sence, hence), square.

Suvatdg -7 -6v : adj, possible.

Swdendedpoc -ov : adj, twelve-sided.

goxvtob -7g -0 : adj, of him/her/it/self, his/her/its/own.

éyyiwv -ov : adj, nearer, nearest.

gyyp&pw : vb, inscribe; see ypdpw.

eidog -eog, 16 : no, figure, form, shape.

einookedpog -ov : adj, twenty-sided.

pw/Myw, gpd/cpin, einov, spnra, spnuo, ppNdny : vb,
say, speak; per pass part, cipnuévoc -7 -ov, adj, said,
aforementioned.

elte ...elte :ind, either...or.

gxootog -7 -ov : pro, each, every one.

énatépog -o -ov : pro, each (of two).

EnBadw, enBadd, éundBalov, enfBéBivna, enBEBAnpat, éxBAndny
: vb, produce (a line).

éndéw : vb, set out.

gnnelpot : vb, be set out, be taken; see netpot.

éxtidnue : vb, set out; see tlInut.

gxtbg : pre + gen, outside, external.

ENdoo/ttlwy -ov : adj, less, lesser.

g\elnw : vb, be less than, fall short of.

épnintw : vb, meet (of lines), fall on; see nintw.

gunpoodev : adv, in front.

gvoAM&E : adv, alternate(ly).

évappolow : vb, insert; perf indic pass 3rd sg, évijppootat.

évdéyopon : vb, admit, allow.

gvexev : ind, on account of, for the sake of.

gwanAdolog -a -ov : adj, nine-fold, nine-times.

gvwolx, 1 : no, notion.

evreptéyw : vb, encompass.

gVTintw : see EUmInTw.

gvtog : pre + gen, inside, interior, within, internal.

g€&ywvog -ov : adj, hexagonal; 10 &€&ywvov, no, hexagon.

g€amidotog -a -ov : adj, sixfold.

¢€7c : adv, in order, successively, consecutively.

€€w9ev : adv, outside, extrinsic.

¢ndvw : adv, above.

énap?], 1 : no, point of contact.

énel : conj, since (causal).

énednmep : ind, inasmuch as, seeing that.

emledyvipt, émledlo, enélevto, —, enélevypon, enéledySny : vb,
join (by a line).

¢mloyllopon : vb, conclude.

¢mvoéw : vb, think of, contrive.

5 7

¢mnédog -ov : adj, level, flat, plane; 1o émnédov, no, plane.

5 /

émonéntopon : vb, investigate.
énloneig -ewg, 1 : no, inspection, investigation.

¢mtdoow : vb, put upon, enjoin; o émtay3év, no, the (thing)
prescribed; see t&oow.

énitpttog -ov : adj, one and a third times.

énupdvete, 9 : no, surface.

Enopot : vb, follow.

gpyopat, Ehedoopat, Aoy, EAAvde, —, — : vb, come, go.
goyotog -7 -ov : adj, outermost, uttermost, last.
gtepopnune -e¢ : adj, oblong; to étepopunueg, no, rectangle.
gtepog -a -ov : adj, other (of two).

gu : par, yet, still, besides.

e0S0ypappog -ov : adj, rectilinear; o ed3vypaupov, no, rec-
tilinear figure.

e090¢ -elxe -0 : adj, straight; # ed3eln, no, straight-line; én’
ebJelag, in a straight-line, straight-on.

ebplonw, edbpfonw, ndpov, ebpexa, ebpnpon, ebpédny : vb, find.

épantw : vb, bind to; mid, touch; #| épontopévn, no, tangent;
see &ntw.

gpoppoln, pappdow, Eprpproon, gpnuona, épnuoouat, pnuocdny

: vb, coincide; pass, be applied.
épekyc @ adv, in order, adjacent.
gplonpue : vb, set, stand, place upon; see iotrp.t.
Eyw, E€w, Eoyov, Eoynua, -éoynuat, — : vb, have.

Nyéopon, Nynoopat, Nynoduny, nynuat, —, NyN9nv : vb, lead.
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707 : ind, already, now.
nw, 7éw, —, —, —, — : vb, have come, be present.
Npwdrdiov, 16 : no, semi-circle.

Nutéhtog -o -ov : adj, containing one and a half, one and a

half times.
fuoug -ew -v @ adj, half.
Wmep = ¥ + mep : conj, than, than indeed.
Ntot ... ¥ : par, surely, either ... or; in fact, either ... or.
Séoic -ewg, 1 : no, placing, setting, position.
Sewpnpa -atog, 16 : no, theorem.
{8io¢ -« -ov : adj, one’s own.

loduc : adv, the same number of times; ioduic mToAamAdoto,
the same multiples, equal multiples.

looywviog -ov : adj, equiangular.

loomhevpog -ov : adj, equilateral.

icomAn97¢ -é¢ : adj, equal in number.

fooc -7 -ov : adj, equal; é% ioov, equally, evenly.

ioooxelc -é¢ : adj, isosceles.

fotut, otfow, oo, —, —, éotadny : vb tr, stand (some-
thing).

fotut, otfow, oy, Eotnuo, Eotapat, éotadny : vb intr, stand
up (oneself); Note: perfect I have stood up can be taken
to mean present I am standing.

toobdrc -é¢ : adj, of equal height.

nod&mep : ind, according as, just as.

n&detog -ov : adj, perpendicular.

xa3dhov : adv, on the whole, in general.

woléw : vb, call.

ndnevog = unoll ESvog .

w&v = nad &v : ind, even if, and if.

notaypopt], 1 : no, diagram, figure.

notaypdpw : vb, describe/draw, inscribe (a figure); see ypdypw.
notomohovdéw : vb, follow after.

notokeinw @ vb, leave behind; see Aslnw; & notaheinépeve, no,
remainder.

rnotéhniog -ov : adj, in succession, in corresponding order.

rotapetpéw : vb, measure (exactly).

xotaevtéew : vb, come to, arrive at.

notoeonsv&lw : vb, furnish, construct.

netpot, ustoopot, —, —, —, — : vb, have been placed, lie, be
made; see ti9npL.

#évTpov, 10 : no, center.

w\&w : vb, break off, inflect.

rhivw, whive, Exhve, wénhnar, nénhpon, ExAiSny : vb, lean, in-

cline.
»hiolg -ewg, 9 : no, inclination, bending.

rothog -7 -ov : adj, hollow, concave.

%opLYY], ¥ : no, top, summit, apex; xxtd xopvey, vertically
opposite (of angles).

%nplvw, ©PW&, Expiva, nénpra, uénptpot, expidnv : vb, judge.

nbBog, 6 : no, cube.

wdrhog, O : no, circle.

#nOoAv8pog, O : no, cylinder.

#np16¢ -1 -6év @ adj, convex.

n®vog, O : ho, cone.

hopBévw, AMdopat, ExaBov, elingpo elinupo, Eledny : vb,
take.

Aéyw :vb, say; pres pass part, keyépevog -1 -ov, no, so-called;
see Elpw.

Aeinw, Aeldw, Elmov, Aéhowmo, AMéhetppot, Ehelpdny : vb, leave,

leave behind.

Anppdtiov, 6 : no, diminutive of Afjppec.

Mppa -otog, 6 : no, lemma.

M -ewg, 1 : no, taking, catching.

A6yog, 6 : no, ratio, proportion, argument.

lowndg -1 -6v @ adj, remaining.

pavdéve, padfoopot, Epadoy, pepdInua, —, — : vb, learn.

uéyedog -eog, 16 : no, magnitude, size.

uellwv -ov : adj, greater.

uévw, pevd, gpewva, pepévrua, —, — : vb, stay, remain.

uépog -ovg, 6 : no, part, direction, side.

uéoog -7 -ov : adj, middle, mean, medial; éx 8%o péowv, bi-
medial.

petohopBéve : vb, take up.

peta€d : adv, between.

petéwpog -ov : adj, raised off the ground.
petpéw : vb, measure.

uétpov, 16 : no, measure.

undeic, undeuie, undév : adj, not even one, (neut.) nothing.
undénote : adv, never.

undétepog -o -ov : pro, neither (of two).
ufrog -eog, 16 : no, length.

ufyv : par, truely, indeed.

povée -&dog, 1 : no, unit, unity.

povayoc -1 -6v : adj, unique.

povay®g : adv, uniquely.

uévog -1 -ov : adj, alone.

voéw, —, vonou, vevomua, vevonuat, évonSnyv : vb, apprehend,

conceive.
otog -« -ov : pre, such as, of what sort.
ontéedpog -ov : adj, eight-sided.
8hog -7 -ov : adj, whole.
opoyevic -éc : adj, of the same kind.

Spotog -a -ov : adj, similar.
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opotomAndng -é¢ : adj, similar in number.
opototayne -é¢ : adj, similarly arranged.

¢ , 3

OuoLOTG -NT0G, 1

opoiwg : adv, similarly.

: no similarity.

opoloyog -ov : adj, corresponding, homologous.
opotayfs -é¢ : adj, ranged in the same row or line.
opwvopog -ov : adj, having the same name.

dvopa -otog, TO : no, name; éx 8%o ovopdtwy, binomial.

o€uyoviog -ov : adj, acute-angled; 10 d€vywviov, no, acute an-
gle.

6&0¢ -elxe -0 : adj, acute.

6molocoby = 6molog -« -ov + obv : adj, of whatever kind, any
kind whatsoever.
6mbo0g -1 -ov @ pro, as many, as many as.

6106068 NOTOY = 61do0g - -ov + 81 + moté + obv : adj,

of whatever number, any number whatsoever.
6m0c0G0bY = énboog -1 -ov + obv : adj, of whatever num-
ber, any number whatsoever.

: pro, either (of two), which (of two).

< 7

OmbTEPOS -0t -0V
opJoywviov, 16 : no, rectangle, right-angle.
6p96¢ -N -6v : adj, straight, right-angled, perpendicular; mpog

5

opduc ywviog, at right-angles.
dpog, 6 : no, boundary, definition, term (of a ratio).

6oadnnotodv = doo + 8% + moté + obv : ind, any number
whatsoever.
6obnig : ind, as many times as, as often as.

OoUTA&GLOG -0V : pro, as many times as.

6oog -1 -ov : pro, as many as.

Somep, Nnep, 6nep : pro, the very man who, the very thing
which.

dotg, g, 6 T : pro, anyone who, anything which.

&ty : adv, when, whenever.

otoby : ind, whatsoever.

o0delg, odSepla, 003éy : pro, not one, nothing.

obdétepog - -ov : pro, not either.

obYétepog : see obdETepoc.

obv3év : ind, nothing.

obv : adv, therefore, in fact.

obtwg : adv, thusly, in this case.

névtwg : adv, in all ways.

nopd : prep + acc, parallel to.

nopaB&Alw : vb, apply (a figure); see B&Alw.

nopaBoin, 1 @ no, application.

nopduetpon @ vb, lie beside, apply (a figure); see netpon.

ToPoA& oW, TapPaAdEw, —, TapnAaya, —, — : vb, miss, fall
aw

nopoadnieninedog, -ov : adj, with parallel surfaces; to mo-
parinieminedov, no, parallelepiped.

oM nAéypappoc -ov : adj, bounded by parallel lines; 16
oo M NAGYpap oy, no, parallelogram.

ToEIANAOG -0V :
parallel-line.

adj, parallel; 0 nxpdlinlov, no, parallel,

TUPATANPWUX -®TOog, T : no, complement (of a parallelogram).
TP TéALETOC -0V 1 adj, penultimate.

nopén 1 prep + gen, except.

nopepintw : vb, insert; see minTw.

ndoyw, neloopat, Enadov, ténovde, —, — : vb, suffer.

TEVTEYWYOC -0V !
tagon.

adj, pentagonal; 10 mevtéywvov, no, pen-

nevtamhdotog -o -ov : adj, five-fold, five-times.

nevienadendywvoy, 16 : no, fifteen-sided figure.

nenepaouévog -1 -ov : adj, finite, limited; see nepaivew.

nepaivew, Tepav®, Enépava, —, Tenépavuat, enepavéviny @ vb,
bring to end, finish, complete; pass, be finite.

népag -atog, 16 : no, end, extremity.

nepatéw, —, —, —, —, — : vb, bring to an end.

neptypdpw : vb, circumscribe; see ypdpw.

neptéyw : vb, encompass, surround, contain, comprise; see

Eyw.
nepthapBivw : vb, enclose; see AapBdve.
neptheinopan : vb, remain over, be left over.
neptooéntg : adv, an odd number of times.
neploodg -1 -6v : adj, odd.
nepupépeta, ¥ : no, circumference.
nepupépw : vb, carry round; see @épw.
TMAMxOTNG -NTog, 7 : no, magnitude, size.
nintw, necobpat, Enecov, néntwxa, —, — : Vb, fall.
n\&tog -eog, 6 : no, breadth, width.
mielwv -ov : adj, more, several.
Thevp&, 1 : no, side.
ni8og -eog, 1O : no, great number, multitude, number.
Ay : adv & prep + gen, more than.
notég -& -6v : adj, of a certain nature, kind, quality, type.
nodamiactélw : vb, multiply.
nolamhaotaopde, 6 : no, multiplication.
nolarA&otov, 16 : no, multiple.

noAdedpog -ov
dron.
noAdYwvog -ov : adj, polygonal; 16 molbywvov, no, polygon.

adj, polyhedral; t6 moldedpov, no, polyhe-

noAdmhevpog -ov : adj, multilateral.
néplopa -atog, ¢ : no, corollary.

noté : ind, at some time.
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TPIOP® -®TOG, TO : No, prism.

npoRaive : vb, step forward, advance.
npodeinvopt : vb, show previously; see Selnvopt.
npoextidnue : vb, set forth beforehand; see ti9nut.

npoepéw : vb, say beforehand; perf pass part, npoetpnuévog -1
-ov, adj, aforementioned; see elpw.

npocavamAneow : vb, fill up, complete.

npocavaypdew : vb, complete (tracing of); see yp&pw.
npooappdlew : vb, fit to, attach to.

npooexPBiilo : vb, produce (a line); see éxBaliw.
npocevploxw : Vb, find besides, find; see ebplonw.
npoohapPépw : vb, add.

npoxetpot : vb, set before, prescribe.

npooxetpat @ vb, be laid on, have been added to; see setpo.
npoonintw : vb, fall on, fall toward, meet; see nintw.

<

TPOTAOIG -ewG, ¥ : Nno, proposition.

npootdoow : vb, prescribe, enjoin; 10 tpootayYév, no, the
thing prescribed; see t&oow.

npootidnue : vb, add; see tidnut.

npoTepog -a -ov : adj, first (comparative), before, former.
npotidnut : vb, assign; see t(InuL.

npoywpeéw : vb, go/come forward, advance.

np®To¢ -0 -ov : adj, first, prime.

nupapic -idog, 1 : no, pyramid.

pntéc -7 -6v : adj, expressible, rational.

popBoetdne -ég :
boid.
poupog, 6 no, rhombus.

adj, thomboidal; ©0 poufoedé, no, rom-

omnpelov, 16 : no, point.

onaAnvog -1 -6v : adj, scalene.

otepedeg -& -6v : adj, solid; T0 otepedy, no, solid, solid body.
otovyetov, 16 : no, element.

otpépw, -otpédw, Eotpedo, —, Eotappat, éotdyny : vb, turn.
obyxetpat : vb, lie together, be the sum of, be composed;

ovyxelpevog -7 -ov, adj, composed (ratio), compounded;
see uetpot.

obynpivw : vb, compare; see xpivw.

ovpBaivew : vb, come to pass, happen, follow; see Boive.
ovpBdrlw : vb, throw together, meet; see BdAiw.
obupetpog -ov : adj, commensurable.

obumag -avtog, 6 : no, sum, whole.

ovpnintw : vb, meet together (of lines); see nintw.
ovumAnpdéw : vb, complete (a figure), fill in.

owvdyw : vb, conclude, infer; see &yw.

ovvoppotepol -at -o 1 adj, both together; 6 ocuvappdtepog,
no, sum (of two things).

ovvamodeinvopt : no, demonstrate together; see SeinvopL.
ouvapr], 1] : no, point of junction.

obvdvo, ol, ol, & : no, two together, in pairs.

ouveyfc -é¢ : adj, continuous; xoté tO ouveyég, continuously.
obvdeotg -swg, % : no, putting together, composition.
obvdetog -ov : adj, composite.

ov[vliotnut : vb, construct (a figure), set up together; perf im-
perat pass 3rd sg, ouveotdtw; see toTrL.

ouvtidnue : vb, put together, add together, compound (ratio);
see tidnput.

oyéolg -ewg, 1] : no, state, condition.

oyfpe -atog, 6 : no, figure.

opalpo -ag, ¥ : no, sphere.

4€ic -ewe, % : no, arrangement, order.

Top&oow, Tpdtn, —, —, TeTdpaypat, tapdydny : vb, stir, trou-
ble, disturbe; tetxpaypévog -7 -ov, adj, disturbed, per-
turbed.

doow, 1w, Etada, tétorye, TéTorypon, Ty dny :
draw up.

vb, arrange,

wéhetoc -a -ov : adj, perfect.

TEpVL, TEUVR, ETepoy, -Tétpnuna, étpnuot, etundny @ vb, cut;

pres/fut indic act 3rd sg, tépet.
TETAPTNUOPLOY, TO : Mo, quadrant.
TETP&YWVOS -0V : adj, square; TO TeTP&YwWVoY, N0, square.
tetpéng @ adv, four times.
tetpanidotog -o -ov : adj, quadruple.
tetpémievpog -ov : adj, quadrilateral.
tetpanibéoc -1 -ov : adj, fourfold.
9, $fow, ESnna, tESMma, netpon, €87y : vb, place, put.
TUNpo -atog, T : no, part cut off, piece, segment.
toivuv : par, accordingly.
Totobtog -adTy -obto : pro, such as this.
topeds -éwg, 6 : no, sector (of circle).
ToWY, 1 : no, cutting, stump, piece.
ténog, 6 : no, place, space.
Tooowtég : adv, so many times.
TOGULTATALGLOG -0t -0V : pro, SO many times.
T0000TO¢ -a)TY] -0DTO @ pro, SO many.
touvtéott = tobT Eot : par, that is to say.
tpanéltov, T6 : no, trapezium.
Tplywvog -ov : adj, triangular; 1o tpiywvov, no, triangle.
TotmA&otog -o -ov : adj, triple, threefold.
Tpimhevpog -ov : adj, trilateral.
T -60¢ -7 -ov : adj, triple.

TPOTOG, 6 : No, Way.
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Tyydvw, tedfopar, Etuyov, TeTOYMMa, TETELYPL, ETEVYSNY :
vb, hit, happen to be at (a place).

om&pyw : vb, begin, be, exist; see &pyw.

bmefaipeotc -ewg, 1| : no, removal.

OmepPéiiw : vb, overshoot, exceed; see B&Alw.

bmepoyn, ¥ : no, excess, difference.

< /

Omepéyw : vb, exceed; see Eyw.

< 1 3

OméBeoig -ewg, 9 : no, hypothesis.

Oméuetpat : vb, underlie, be assumed (as hypothesis); see xetport.

brolelnw : vb, leave remaining.

brotelvw, dToTev®, drétetve, drotétana, bnotétapat, dreTddny
: vb, subtend.

bdoc -eog, 16 : no, height.

pavepog -& -ov : adj, visible, manifest.

P, prow, Egnv, —, —, — : vb, say; Epopev, we said.
pépw, olow, Nveyrov, evijvoya, evijveyuat, NvéySny : vb, carry.
ywptov, 16 : no, place, spot, area, figure.

ywpic : pre + gen, apart from.

dadew : vb, touch.

¢ : par, as, like, for instance.

®¢ gtuyev : par, at random.

woavtwg : adv, in the same manner, just so.

%ote : conj, so that (causal), hence.
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