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Motivation

How I got interested in Bayesian networks:
1 Problems of naturalized philosophy of science (limitations of the case

study method, lack of a normative framework)
2 Problems of traditional formal philosophy of science (too far away from

real science, of not much use for science)

What is so good about Bayesian networks in philosophy?
They are simple, intuitive, come with a powerful mathematical
machinery, are closely connected to statistics and cognitive science,
embedded in a normative framework (“Bayesianism”), and allow for
the analysis of less idealized epistemic scenarios,. . .

Bayesian networks are a philosophical modeling tool which has many
applications (“success stories”).

However, Bayesian networks are not only useful in periods of
philosophical normal science. They also help in addressing a number
of challenges to an established philosophical paradigm – Bayesianism.
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I. Standard Bayesianism
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Bayesianism

Bayesianism is a theory about the statics and dynamics of (partial)
beliefs.

Its starting point is the psychological truism that we believe different
(contingent) propositions more or less strongly: we assign different
degrees of belief to them.

To make the concept “degree of belief” more precise, we need:

(i) a calculus to combine different degrees of belief,
(ii) an algorithm to update degrees of belief, and
(iii) a normative justification for (i) and (ii).

Bayesianism provides exactly this.

Let’s see how this works for the static and the dynamic part.
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Bayesianism: Statics

Bayesianism identifies degrees of belief with probabilities, i.e. the
(rational) degrees of belief of an agent at a certain time have to
satisfy the axioms of probability theory.

What justifies this identification?
1 Pragmatic arguments (“Dutch book arguments”): Show that if one

has incoherent degrees of belief, i.e. degrees of belief which are not
consistent with the probability calculus, then one will loose money in a
betting scenario.

2 Epistemic arguments: Identifying degrees of belief with probabilities
makes sure that the expected inaccuracy of our beliefs is minimized
(“Epistemic Utility Theory”).
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Bayesianism: Dynamics

An agent considers a number of propositions. They are represented
by an algebra A which comprises the propositional variables
A1, . . . ,An. A prior probability distribution P is defined accordingly.

She then learns that E = A1 is the case. This prompts her to switch
from P to the posterior distribution P ′ which satisfies P ′(E) = 1. To
make sure that her new degrees of belief are coherent, she applies

Bayes Theorem (“Conditionalization”)

P ′(Ai) := P(Ai|E) =
P(E|Ai) · P(Ai)

P(E)
.

If the evidence is not certain and the rigidity condition holds, then
Conditionalization generalizes to Jeffrey Conditionalization.

There are pragmatic and epistemic arguments that justify the use of
Conditionalization. These arguments are, however, more controversial
than in the static case.
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Bayesian Confirmation Theory

Confirmation theory is the most important (though by far not the
only) application of Bayesianism in philosophy.

Typical scenario: The evidence E is direct, i.e. it is a deductive or
inductive consequence of the tested hypothesis H. In this case, the
probabilistic relationship between the corresponding propositional
variables H and E can be represented by the following Bayesian
network (with a probability distribution P defined over it):

H E

We can then calculate P(H) and P ′(H) = P(H|E) (if the evidence
becomes certain) and test whether E confirms H or not (i.e. whether
P ′(H) > P(H) or not).

One can also investigate more complicated scenarios. Note, though,
that in all these cases the evidence is typically assumed to be direct.
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Bayesianism and its Problems

Bayesianism has many successful applications in philosophy and the
sciences beyond confirmation theory.

At the same time, Bayesianism faces a number of problems.

Some of these problems are modeling challenges (such as the problem
of old evidence); others may point to a better theory beyond
Bayesianism (such as the possible failure to represent ignorance).

I am not too concerned about these problems. Bayesianism should be
treated like a scientific theory (and not like more), and all scientific
theories have problems and face anomalies. Likewise, the successful
application of scientific theories justifies (at least) their pragmatic use.

Having said this, I will now identify three further problems and
propose strategies to solve them.
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1. Non-Empirical Evidence

Standard Bayesianism assumes that the evidence is direct in the sense that
it is a deductive or inductive consequence of the theory under
consideration. However, this may not always be the case. Some evidence
may be non-empirical.

There is a lively debate in the methodology of science whether there
is non-empirical evidence for a scientific theory.
Such confirmation would be helpful in many areas of fundamental
physics where direct empirical evidence is scarce or non-existent. Here
are two examples:

1 The No Alternatives Argument: Does the observation that scientists
have not yet found an alternative to string theory (despite a lot of
effort and brain power) confirm the theory?

2 Analogue Simulation: Is it possible to confirm a claim about an
empirically unaccessible phenomenon (such as black hole Hawking
radiation) by experimenting on a different physical system (such as a
Bose Einstein condensate)?
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1. Non-Empirical Evidence

Note that in both cases the alleged evidence is indirect (and in this
sense non-empirical).

It would be fantastic to have such ways of indirect confirmation, but
is it possible?

And if it is in principle possible to have non-empirical confirmation,
under which conditions is it possible?

Note that theories such as HD confirmation or Popper’s
falsificationism dismiss this alleged evidence from the beginning.

This inference is too quick: While it may well turn out that there is
no non-empirical evidence, it should not be part of the basic
assumptions of the confirmation (or corroboration) theory one uses.
Such theories are not useful for understanding contemporary science.

We will see that Bayesianism has the resources to analyze and
reconstruct confirmation scenarios involving non-empirical evidence.
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2. New Types of Evidence

Standard Bayesianism assumes that the evidence is propositional.
However, there may be evidence which does not prompt a shift of the
probability of one of the propositions in the algebra. Some evidence may
be non-propositional.

It seems to be too restrictive to only consider propositional evidence.
There may be many other types of learning experiences that prompt
us to change our beliefs. How can they be modeled in the Bayesian
framework?

Here are two examples:
1 Structural Evidence: The agent may learn e.g. that the underlying

causal network of a set of propositions is such and such.
2 Indicative Conditionals: The agent may learn an indicative conditional

of the form “If A, then C”.
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2. New Types of Evidence

It is not clear whether these learning experiences can be modeled by
conditioning on a proposition from the algebra.

In the case of structural evidence one may not want to assume that
the agent has meta-beliefs about the other propositions in her
algebra. And even if she had, how should one update on them?

In the case of indicative conditionals almost everything is
controversial: Is the conditional propositional (or is there a way
around Lewis’ triviality results)? And if so, can a conditional be
represented by a material conditional? We will see that things
become especially complicated when the conditional is not strict.

We will focus on learning from indicative conditionals and show that
the distance-based approach to Bayesianism (which uses the
diachronic norm Conservatism) has the resources to analyze such
purported cases of non-propositional evidence.
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3. Genuinely New Evidence

Standard Bayesianism assumes that the learned proposition is already on
the agent’s “radar”. It is expected and has a prior probability. However,
this may not always be the case. Some evidence may be genuinely new.

It is not very plausible that agents have prior beliefs about all possible
kinds of evidence they may learn.

Here are three examples:
1 Testimony: A bystander gives a testimony about a murder case. Here

it is not plausible that the policeman had any prior expectations about
this testimony.

2 Argumentation: We are debating and you make a new argument which
I didn’t anticipate.

3 Scientific Theory Change: A new theory shows up and it is not
plausible that the agent expected it (let alone that she assigned a
probability to it). It is also not plausible that the new theory emerged
from the “catch all” of the old theory (which may work sometimes).
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3. Genuinely New Evidence

It is a serious restriction of the Bayesian framework that it requests
that the algebra of propositions is kept fixed.

At the same time, it is a big advantage of logical frameworks such as
the AGM model of belief revision that they can deal with these cases.

Our hope is to learn from these approaches.

We will see that an extension of the distance-based approach (which
uses the diachronic norm Progressive Conservatism) has the resources
to analyze these cases probabilistically.

We will also extend the approach to modeling contraction, i.e. the
elimination of propositions from the algebra. (Think, for example, of
the phlogiston theory in the example of scientific theory change.)

I address the three problems in turn.
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II. Problem 1: Non-Empirical Evidence
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Non-Empirical Evidence

Bayesianism has the resources to model such confirmation scenarios.

There are, for example, interesting cases where the correlation
between H and E is mediated by a “common cause” variable.

X

EH

To proceed, one has to find a variable X which (i) plays an active role
in the reasoning of the agent and which (ii) plausibly screens off H
from E .

We will see that one can identify such variables for the analysis of the
no alternatives argument and for the reasoning with analogue
simulations.

Other network structures are possible too.
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Illustration: The No Alternatives Argument (NAA)

Scientists often argue like this:

1 Hypothesis H satisfies several desirable conditions (it incorporates
various principles, coheres with other theories,. . . )

2 Despite a lot of effort, the scientific community has not yet found an
alternative to H.

3 Hence, we have one reason in support of H.

Questions:

How good are NAAs?

Under what conditions, if any, do they work?
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The No Alternatives Argument: Variables

1 T has two values, viz. T: The hypothesis H is true, and
¬T: The hypothesis H is not true.

2 F also has two values, viz. F: The scientific community has not yet
found an alternative to H that accounts for the data D and satisfies
the constraints C, and ¬F: The scientific community has found an
alternative to H that accounts for D and satisfies C.

3 Y has N values, viz. Yi : There are exactly i hypotheses which explain
D and fulfill C. (H is one of them.)

Y

TF
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The No Alternatives Argument: A Theorem

Theorem (Dawid, Hartmann and Sprenger 2015)

We set P(Yi) =: yi , P(F|Yi) =: fi and P(T|Yi) =: ti . If (a) fi and ti are
monotonically decreasing in i , (b) yi < 1∀i and (c) there is at least one
pair (i , j) with j > i s.t. yi yj > 0, fi > fj & ti > tj , then P(T|F) > P(T).

Discussion:

The conclusion follows from three apparently plausible premises.

Assumption (b) is the weakest. Note that the underdetermination
thesis suggests that there are always infinitely many alternatives to a
given theory that are equally in accordance with the data (whatever
they are). So why should one not set P(Y∞) = 1? A defender of the
NAA has to answer this question (and Richard Dawid does so).
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Upshot

The case of analogue simulation can be analyzed accordingly
(Dardashti et al. 2019).

In general, the analysis of non-empirical evidence requires the
specification of (i) other “active” variables (beyond H and E ) and of
(ii) a causal structure.

Using this methodology, other alleged cases of non-empirical theory
confirmation can be analyzed:

1 Inference to the best explanation: ‘H explains E best’; collider structure
(Tesic, Eva, and Hartmann in prep.)

2 The problem of old evidence: ‘H explains E’ and ‘H’s best competitor
explains E’ (Hartmann and Fitelson 2015, Eva and Hartmann 2019,
Sprenger and Hartmann 2019).
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III. Problem 2: New Types of Evidence
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Learning Conditionals: An Example

The Ski Trip Example (Douven and Dietz 2011)

Harry sees his friend Sue buying a skiing outfit. This surprises him a bit,
because he did not know of any plans of hers to go on a skiing trip. He
knows that she recently had an important exam and thinks it unlikely that
she passed. Then he meets Tom, his best friend and also a friend of Sue,
who is just on his way to Sue to hear whether she passed the exam, and
who tells him,

If Sue passed the exam, then her father will take her on a skiing vacation.

Recalling his earlier observation, Harry now comes to find it more likely
that Sue passed the exam.

Question: How can this learning experience be modeled?
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Using the Material Conditional

Note that there are three propositional variables involved here:
1 E : ‘Sue passes the exam’
2 S : ‘Sue is invited on a ski trip’
3 B: ‘Sue buys a skiing outfit’

Harry has prior beliefs about these propositions and then learns two
items of information: (i) B and (ii) “If E, then S”.

Conditionalizing on B and the material conditional E ⊃ S ≡ ¬E ∨ S,
one can show that the probability of E increases under plausible
conditions.

This becomes especially clear if one makes the additional assumption
that E ⊥⊥ B|S and if one uses the following chain structure:

E S B
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Problems

Representing the indicative conditional A→ C by the material
conditional A ⊃ C ≡ ¬A ∨ C has two problems:

1 It cannot deal with non-extreme conditionals, e.g. when the conditional
is not learned with certainty. Interestingly, (Jeffrey) conditionalizing on
the material conditional leads to counter-intuitive consequences in
these cases.

2 It cannot deal with conditionals which are uttered by a partially reliable
information source.

The second problem is still (mostly) unsolved (see Collins et al.
(2020), Hahn and Hartmann (2020)).

To address the first problem, we introduce the distance-based
approach.
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The Distance-Based Approach

Question: Which general principle should we use to specify our new
probability distribution after learning a new item of information
(propositional or otherwise)?

Answer: The principle of Conservativity. That is, we request that the
new probability distribution Q is as close as possible to the old
probability distribution P, taking the learned information as a
probabilistic constraint on Q into account.

Examples:
1 If we learn that the evidence E obtains, then the corresponding

constraint is Q(E) = 1.
2 If we learn the indicative conditional “If A, then C”, then the

corresponding constraint is Q(C|A) = 1.
Note that this does not require us to take a stance concerning the
propositional status of an indicative conditional.

Working out the proposal: To proceed, we need to choose a measure
for the “distance” between two probability distributions.
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Choosing a Distance Measure

f -Divergence

Let S1, . . . ,Sn be the possible values of a random variable S over which
probability distributions P and Q are defined and let f be a convex
function with f (1) = 0, pi := P(Si) and qi := Q(Si).Then

Df (Q||P) :=
n∑

i=1

pi · f (qi/pi ) .

The Kullback Leibler-divergence obtains for f (t) = t log t. Other
examples are the inverse KL-divergence, the χ2-divergence, and the
Hellinger distance.

Note that f -divergencies are not necessarily symmetrical. They may
also violate the triangle inequality.

Question: Why should we focus on f -divergencies?
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Jeffrey Conditionalization

Theorem (Diaconis and Zabell, 1982)

An agent considers the propositional variables H and E and has a
probability distribution P defined over them. She then learns that
Q(E) = e ′ < 1. Minimizing an f -divergence between Q and P taking this
constraint into account yields Q(H) = P(H|E) · e ′ + P(H|¬E) · e ′, i.e.
Jeffrey Conditionalization.a

aHere and below we use the the shortcut x := 1− x .

This is an important result that shows that all f -divergences are
indistinguishable, at least when learning propositional evidence.

We focus on f -divergences because we request that only those
probabilistic divergences are admissible which yield Jeffrey
conditionalization (two variables, rigidity holds).
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Learning Indicative Conditionals

If one learns the (strict) indicative conditional “If A, then C” from a
perfectly reliable source, then the constraint on Q is Q(C|A) = 1.

Minimizing an f -divergence between Q and P taking this constraint
into account yields the same new probability distribution for all
f -divergences and all scenarios discussed in the literature.

This new probability distribution is identical with the one which one
obtains by conditioning on the corresponding material conditional:
Q = P ′

This is easy to see by noting that Q(C|A) = 1 iff Q(A ⊃ C) = 1 (if
Q(A) > 0).
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Learning (non-strict) Indicative Conditionals

Let us now consider non-strict indicative conditionals which are much
more natural from a Bayesian point of view.

In this case the constraint is Q(C|A) < 1) and one finds that different
f -divergencies yield different new probability distributions.

We therefore have to “put our money” on one specific f -divergence.
But on which?

To proceed, we have the following three options:
1 Accept the diachronic norm Minimizing Inaccuracy (as in Epistemic

Utility Theory). Then the inverse KL-divergence is the unique
probabilistic divergence.

2 Identify other diachronic norms which (hopefully) restrict the class of
admissible divergencies.

3 Explore empirically which f -divergence is best (this may vary with the
context).
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Conditionalization and Its Limits

As should be clear by now, I do not think that Conditionalization
(“Bayes Theorem”) is at the heart of Bayesianism.

Conditionalization often yields the right results, but it should not be
considered to be one of the defining elements of Bayesianism.

This is because there are many other types of information one might
learn, and the corresponding update can often not be modeled as an
instance of Conditionalization.

Even if we learn a proposition, there may be other relevant
propositional variables involved which should, e.g., stay fixed across
the update. Such additional constraints cannot be accounted for if
the only principle we have available is Conditionalization.

The distance-based approach, on the other hand, justifies (Jeffrey)
Conditionalization (when it can be applied) and is much more general.
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IV. Problem 3: Genuinely New Evidence

Stephan Hartmann (MCMP/LMU) Bayes Nets in Philosophy of Science Arizona State, 2021 32 / 43



The Problem of the Algebra

Genuine learning involves the addition of a new variable to the agent’s
algebra.

It cannot be modeled as an application of Conditionalization as one
can only condition on a proposition in one’s algebra.

It can also not be modeled by an application of the distance-based
approach as this approach requires that the respective probability
distributions are defined over the same algebra.

Question: What can be done?

N.B.: Genuine learning is standardly accounted for in models of belief
revision such as the AGM model. This model introduces three basic
operations: Belief expansion, contraction and revision and presents a
number of postulates that these operations satisfy. This make sure
that the new belief set is consistent.
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Expansion

The algebra A of an agent comprises the propositional variables
A1, . . . ,An.

They are organized in a Bayesian network and the corresponding
probability distribution is P.

The agent then decides to add the propositional variable An+1 to A.

Hence, the new (“expanded”) algebra is A′ = A ∪ An+1.

Question: What is her new probability distribution Q?
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Expansion: The Procedure in Three Steps

1 (Relate) Relate An+1 to A1, . . . ,An:

(i) Leave the network structure of A1, . . . ,An unchanged.
(ii) Add arcs between An+1 and A1, . . . ,An.
(iii) Identify as many constraints (involving An+1) on Q as possible (such as

likelihoods).

2 (Minimize) Minimize an f -divergence between Q (restricted to
A1, . . . ,An) and P, taking the constraints into account.

3 (Adjust) If this does not fully specify Q, then one has at least two
options:

(i) adopt an imprecise probability distribution, or
(ii) apply MaxEnt or a related method.
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Progressive Conservatism

The resulting diachronic norm is called Progressive Conservatism.

Progressive, because the agent is encouraged to expand her algebra.

Conservatism, because the agent makes sure that her old beliefs, i.e.
her beliefs about the propositions in her old algebra,, change as little
as possible.

The proposed procedure leads to plausible results.

For example, if one only specifies the marginal probability of the new
proposition, then the probability distribution over the old variables
does not change and the new variable is independent of the old ones.

Another interesting example is novel confirmation.
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Revision

Expansion assumes that the network structure does not change.

However, a new proposition may prompt you to make changes in the
network structure.

Example: You consider two positively correlated variables –
YellowFingers and HeartDisease. You model the correlation by
drawing an arc from one to the other. Then you learn a (genuinely)
new variable – Smoking – which prompts you to change the network
structure to a common cause network.

The new network structure imposes a structural constraint on the
new probability distribution.

Then the Conservativity norm can be applied.

It will be interesting to systematically study examples like this.
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Contraction

Here the agent switches from an algebra of n propositional variables
(A1, . . . ,An) to an algebra of n − 1 propositional variables (A1, . . . ,An−1).

Case 1: No change of the network structure of the old algebra (restricted
to A1, . . . ,An−1):

1 (Eliminate) Eliminate An and delete all arcs to and from An.

2 (Minimize) Minimize an f -divergence between Q and P (restricted to
A1, . . . ,An−1). This simply amount to marginalizing out An from P.

Case 2: No change of the network structure of the old algebra (restricted
to A1, . . . ,An−1):

1 (Eliminate) Eliminate An and delete all arcs to and from An.

2 (Minimize) Minimize an f -divergence between Q and P (restricted to
A1, . . . ,An−1). This may lead to a different result than the one which
follows from marginalizing out An from P. (There may be interesting
parallels to the principle of minimal change in the AGM model.)
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VI. Outlook
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Outlook

Bayesian networks have many intriguing applications in philosophy of
science (and in other parts of philosophy and science).

These applications build on the fact that Bayesian networks provide a
compact and intuitive representation of an agent’s belief system.

Bayesian networks are also an important tool for the development of
philosophical theories. To show this, I focused on the Bayesian
framework and identified strategies to solve three open problems:

1 Non-empirical evidence: introduce new “active” variables.
2 New types of evidence: introduce the distance-based approach with the

Conservatism norm.
3 Genuinely new evidence: introduce the new norm Progressive

Conservatism.

We have seen that Bayesianism is a powerful philosophical modeling
framework that is open for empirical input (e.g. regarding which
f -divergence is best). Bayesian networks make it even more powerful.
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Thanks. . .

. . . for your attention. . .

and to my collaborators Richard Dawid, Benjamin Eva, Ulrike Hahn,
Soroush Rafiee Rad, Jan Sprenger, and Reuben Stern.
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