The Semantic and the Syntactic Perspective

Logical Consequence

 $\phi_1, \phi_2, ..., \phi_k \vDash \psi$ *iff*

all valuations V's that make $\phi_1, \phi_2, ..., \phi_k$ true also make ψ true

The Semantic and the Syntactic Perspective

Logical Consequence

 $\phi_1, \phi_2, ..., \phi_k \vDash \psi$ *iff*

all valuations V's that make $\phi_1, \phi_2, ..., \phi_k$ true also make ψ true

Derivability

$$\phi_1, \phi_2, ..., \phi_k \vdash \psi$$

1††

there is a derivation whose assumptions are ϕ_1 , ϕ_2 , ..., ϕ_k and whose conclusion is ψ

What Does a Derivation Look Like?

$$\frac{\frac{[\varphi]^{1}}{\varphi \vee \neg \varphi} \vee I \quad [\neg(\varphi \vee \neg \varphi)]^{2}}{\frac{\frac{1}{\neg \varphi} \to I^{1}}{\varphi \vee \neg \varphi} \vee I} \xrightarrow{[\neg(\varphi \vee \neg \varphi)]^{2}} [\neg(\varphi \vee \neg \varphi)]^{2}}{\frac{\frac{1}{\varphi \vee \neg \varphi} RAA^{2}}{\varphi \vee \neg \varphi} RAA^{2}}$$