
2-8 CHAPTER 2. PROPOSITIONAL LOGIC

“Are there traffic jams on the road to work?”. To find out about the first question, you have to
check your alarm clock, to find out about the second you have to look out of the window, and to
find out about the third you have to listen to the traffic info on the radio. We can represent these
possible facts with three basic propositions, p, q and r, with p expressing “I have overslept”, q
expressing “It is raining”, and r expressing “There are traffic jams.” Suppose you know nothing
yet about the truth of your three facts. What is the space of possibilities?

Exercise 2.2 (Continued from previous exercise.) Now you check your alarm clock, and find out
that you have not overslept. What happens to your space of possibilities?

Toward a system Once we have a system in place for these tasks, we can do many
further things. For instance, instead of asking whether a given inference is valid, we can
also just look at given premises, and ask what would be a most informative conclusion.
Here is a case that you can think about (it is used as a basic inference step to program
computers that perform reasoning automatically):

Exercise 2.3 You are given the information that p-or-q and (not-p)-or-r. What can you conclude
about q and r? What is the strongest valid conclusion you can draw? (A statement is stronger than
another statement if it rules out more possibilities.)

A precise system for the above tasks can also be automated, and indeed, propositional
logic is historically important also for its links with computation and computers. Comput-
ers become essential with complex reasoning tasks, that require many steps of inference
or update of the above simple kinds, and logical systems are close to automated deduc-
tion. But as we shall see later in Section 2.10, there is even a sense in which propositional
logic is the language of computation, and it is tied up with deep open problems about the
nature of computational complexity.

But the start of our story is not in computation, but in natural language. We will identify
the basic expressions that we need, and then sharpen them up in a precise notation.

2.4 The Language of Propositional Logic

Reasoning about situations involves complex sentences with the ‘logical connectives’ of
natural language, such as ‘not’, ‘and’, ‘or’ and ‘if .. then’. These are not the only ex-
pressions that drive logical reasoning, but they do form the most basic level. We could
stay close to natural language itself to define our system (traditional logicians often did),
but it has become clear over time that working with well-chosen notation makes things
much clearer, and easier to manipulate. So, just like mathematicians, logicians use formal
notations to improve understanding and facilitate computation.

NB: This is from Chapter 2 of the textbook “Logic In action”This is from Chapter 2 of textbook “Logic in Action” (www.logicinaction.org)

2.4. THE LANGUAGE OF PROPOSITIONAL LOGIC 2-9

From natural language to logical notation As we have seen in Section 2.3, logical
forms lie behind the valid inferences that we see around us in natural language. So we
need a good notation to bring them out. For a start, we will use special symbols for the
key logical operator words:

Symbol In natural language Technical name

¬ not negation

^ and conjunction

_ or disjunction

! if ... then implication

$ if and only if equivalence

(2.15)

Other notations occur in the literature, too: some dialects have & for ^, and ⌘ for $. We
write small letters for basic propositions p, q, etcetera. For arbitrary propositions, which
may contain connectives as given in the table (2.15), we write small Greek letters ', ,�,
etc.

Inclusive and exclusive disjunction The symbol _ is for inclusive disjunction, as in
‘in order to pass the exam, question 3 or question 4 must have been answered correctly’.
Clearly, you don’t want to be penalized if both are correct! This is different from the
exclusive disjunction (most often written as �), as in ‘you can marry Snowwhite or Cin-
derella’. This is not an invitation to marry both at the same time. When we use the word
‘disjunction’ without further addition we mean the inclusive disjunction.

Now we can write logical forms for given assertions, as ‘formulas’ with these symbols.
Consider a card player describing the hand of her opponent:

Sentence “He has an Ace if he does not have a Knight or a Spade”

Logical formula ¬(k _ s) ! a

It is useful to see this process of formalization as something that is performed in separate
steps, for example, as follows. In cases where you are in doubt about the formalization
of a phrase in natural language, you can always decide to ‘slow down’ to such a stepwise
analysis, to find out where the crucial formalization decision is made.

2-10 CHAPTER 2. PROPOSITIONAL LOGIC

He has an Ace if he does not have a Knight or a Spade,
if (he does not have a Knight or a Spade), then (he has an Ace),
(he does not have a Knight or a Spade) ! (he has an Ace),
not (he has a Knight or a Spade) ! (he has an Ace),
¬ (he has a Knight or a Spade) ! (he has an Ace),
¬ ((he has a Knight) or (he has a Spade)) ! (he has an Ace),
¬ ((he has a Knight) _ (he has a Spade)) ! (he has an Ace),
¬(k _ s) ! a

In practice, one often also sees mixed notations where parts of sentences are kept intact,
with just logical keywords in formal notation. This is like standard mathematical lan-
guage, that mixes symbols with natural language. While this mixing can be very useful
(the notation enriches the natural language, and may then be easier to absorb in cogni-
tive practice), you will learn more here by looking at the extreme case where the whole
sentence is replaced by a logical form.

Ambiguity The above process of taking natural language to logical forms is not a rou-
tine matter. There can be quite some slack, with genuine issues of interpretation. In
particular, natural language sentences can be ambiguous, having different interpretations.
For instance, another possible logical form for the card player’s assertion is the formula

(¬k _ s) ! a (2.16)

Check for yourself that this says something different from the above. One virtue of logical
notation is that we see such differences at a glance: in this case, by the placement of the
brackets, which are auxiliary devices that do not occur as such in natural language (though
it has been claimed that some actual forms of expression do have ‘bracketing functions’).

Sometimes, the logical form of what is stated is even controversial. According to some
people, ‘You will get a slap (s), unless you stop whining (¬w)’ expresses the implication
w ! s. According to others, it expresses the equivalence w $ s. Especially, negations
in natural language may quickly get hard to grasp. Here is a famous test question in a
psychological experiment that many people have difficulty with. How many negations
are there, and what does the stacking of negations mean in the following sentence:

“Nothing is too trivial to be ignored!”

Formal language and syntactic trees Logicians think of the preceding notations, not
just as a device that can be inserted to make natural language more precise, but as some-
thing that is important on its own, namely, an artificial or formal language.

You can think of formulas in such a language as being constructed, starting from basic
propositions, often indicated by letters p, q, etcetera, and then applying logical operations,
with brackets added to secure unambiguous readability.

2.4. THE LANGUAGE OF PROPOSITIONAL LOGIC 2-11

Example 2.4 The formula ((¬p _ q) ! r) is created stepwise from proposition letters
p, q, r by applying the following construction rules successively:

(a) from p, create ¬p,

(b) from ¬p and q, create (¬p _ q)

(c) from (¬p _ q) and r, create ((¬p _ q) ! r)

This construction may be visualized in trees that are completely unambiguous. Here
are trees for the preceding example plus a variant that we already noted above. Mathe-
matically, bracket notation and tree notation are equivalent — but their cognitive appeal
differs, and trees are widely popular in mathematics, linguistics, and elsewhere:

((¬p _ q) ! r)

(¬p _ q)

¬p

p

q

r

(¬(p _ q) ! r)

¬(p _ q)

(p _ q)

p q

r

This example has prepared us for the formal presentation of the language of propositional
logic. There are two ways to go about this, they amount to the same: an ‘inductive
definition’ (for this technical notion, see Appendix A). Here is one way:

Every proposition letter (p, q, r, . . .) is a formula. If ' is a formula, then ¬'
is also a formula. If '1 and '2 are formulas, then ('1 ^ '2), ('1 _ '2),
('1 ! '2) and ('1 $ '2) are also formulas. Nothing else is a formula.

We can now clearly recognize that the way we have constructed the formula in the ex-
ample above is exactly according to this pattern. That is merely a particular instance of
the above definition. The definition is formulated in more abstract terms, using the for-
mula variables '1 and '2. An even more abstract specification, but one that amounts to
exactly the same inductive definition, is the so-called BNF specification of the language
of propositional logic. BNF stands for ‘Backus Naur Form’, after the computer scientists
John Backus and Peter Naur who introduced this device for the syntax of programming
languages.

Definition 2.5 (Language of propositional logic) Let P be a set of proposition letters
and let p 2 P .

' ::= p | ¬' | (' ^ ') | (' _ ') | (' ! ') | (' $ ')

2-12 CHAPTER 2. PROPOSITIONAL LOGIC

We should read such a definition as follows. In the definition we define objects of the type
‘formula in propositional logic’, in short: formulas. The definition starts by stating that
every atomic proposition is of that type, i.e., is a formula. Then it says that if an object
is of type ', then ¬' is also of type '. Note that it does not say that ¬' is the same
formula '. It merely says that both can be called ‘formula’. This definition then helps us
to construct concrete formulas step by step, as in the previous example.

Backus Naur form is an example of linguistic specification. In fact, BNF is a computer
science re-invention of a way to specify languages that was proposed in 1956 by the
linguist Noam Chomsky.

In practice we often do not write the parentheses, and we only keep them if their removal
would make the expression ambiguous, as in p _ q ^ r. This can mean ((p _ q) ^ r) but
also (p _ (q ^ r)) and that makes quite a difference. The latter is already true if only p is
true, but the former requires r to be true. Or take a natural language example: “Haddock
stays sober or he drinks and he gets angry.”

Exercise 2.6 Write in propositional logic:

• I will only go to school if I get a cookie now.

• John and Mary are running.

• A foreign national is entitled to social security if he has legal employment or if he has had
such less than three years ago, unless he is currently also employed abroad.

Exercise 2.7 Which of the following are formulas in propositional logic:

• p ! ¬q

• ¬¬ ^ q _ p

• p¬q

Exercise 2.8 Construct trees for the following formulas:

• (p ^ q) ! ¬q

• q ^ r ^ s ^ t (draw all possible trees: think of bracket arrangements).

Exercise 2.9 From the fact that several trees are possible for q^r^s^t, we see that this expression
can be read in more than one way. Is this ambiguity harmful or not? Why (not)? If you find this
hard to answer, think of a natural language example.

2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-13

A crucial notion: pure syntax Formulas and trees are pure symbolic forms, living
at the level of syntax, as yet without concrete meaning. Historically, identifying this
separate level of form has been a major abstraction step, that only became fully clear in
19th century mathematics. Most uses of natural language sentences and actual reasoning
come with meanings attached, unless very late at parties. Pure syntax has become the
basis for many connections between logic, mathematics, and computer science, where
purely symbolic processes play an important role.

Logic, language, computation, and thought The above pictures may remind you of
parse trees in grammars for natural languages. Indeed, translations between logical forms
and linguistic forms are a key topic at the interface of logic and linguistics, which has also
started working extensively with mathematical forms in the 20th century. Connections be-
tween logical languages and natural language have become important in Computational
Linguistics and Artificial Intelligence, for instance when interfacing humans with com-
puters and symbolic computer languages. In fact, you can view our syntax trees in two
ways, corresponding to two major tasks in these areas. ‘Top down’ they analyze complex
expressions into progressively simpler ones: a process of parsing given sentences. But
‘bottom up’ they construct new sentences, a task called language generation.

But also philosophically, the relation between natural and artificial languages has been
long under debate. The more abstract level of logical form has been considered more
‘universal’ as a sort of ‘language of thought’, that transcends differences between natural
languages (and perhaps even between cultures). You can also cast the relation as a case
of replacement of messy ambiguous natural language forms by clean logical forms for
reasoning and perhaps other purposes — which is what the founding fathers of modern
logic had in mind, who claimed that natural languages are ‘systematically misleading’.
But less radically, and perhaps more realistic from an empirical cognitive viewpoint, you
can also see the relation as a way of creating hybrids of existing and newly designed
forms of expression. Compare the way the language of mathematicians consists of natural
language plus a growing fund of notations, or the way in which computer science extends
our natural repertoire of expression and communication.

2.5 Semantic Situations, Truth Tables, Binary Arithmetic

Differences in formal syntax often correspond to differences in meaning: the above two
trees are an example. To explain this in more detail, we now need a semantics that, for
a start, relates syntactic objects like formulas to truth and falsity in semantic situations.
Thus, formulas acquire meaning in specific settings, and differences in meaning between
formulas are often signalled by differences in truth in some situation.

