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MARCELLO DI BELLO – STANFORD UNIVERSITY

DERIVATIONS IN PREDICATE LOGIC – WEEK #8

1 FREE AND BOUND VARIABLES

Before discussing the derivation rules for predicate logic, we should distinguish between
free variables and bound variables. Intuitively, a variable x occurs free in a formula if there
is no quantifier that binds x. For example, the variable x occurs free in the formula P (x)
because there is no quantifier that binds x. In the formula ∀xP (x), instead, the variable x
is bound by the universal quantifier ∀x. More precisely:

A variable x occurs free provided x is not within the scope of the quantifier ∀x
or ∃x. By contrast, a variable x is bound if it does occur within the scope of the
quantifier ∀x or ∃x.

What is the scope of a quantifier? To determine the scope of a quantifier, look at the
open bracket ‘(’ that immediately follows the quantifier and wait until the bracket is closed
by ‘)’. The formula within the brackets (...) is the scope of the quantifier. For example,
the scope of the quantifier ∃x in the formula ∃x((R(x, y) ∧ P (x) ∧ A(y)) is the formula
R(x, y) ∧ P (x) ∧A(y).

Here are some examples of the distinction between free and bound variables:

- The variable x occurs free in ∀y(P (x)) because the universal quantifier ∀y does not
bind the variable x. Importantly, the variable x is within the scope of the quantifier
∀y because x is part of P (x), but x cannot be bound by a quantifier such as ∀y. By
contrast, the variable y is bound by the quantifier ∀y in the formula ∀y(P (y)).

- Consider the formula ∃x(P (x) ∧ P (y)). The variable x is bound by the quantifier ∃x,
although the variable y occurs free because there is no quantifier that binds y. Instead,
in the formula ∃y(∃x(P (x)∧P (y))), both variables x and y are bound by a quantifier.1

- Consider the formula ∃x(P (x)) ∧ ∃x¬(P (x)). The first occurrence of x is bound by
the first existential quantifier, while the second occurrence of x is bound by the sec-
ond existential quantifier. The formula ∃x(P (x)) ∧ ∃x¬(P (x)) is no different from

1Note that, relative to the formula ∃y(∃x(P (x) ∧ P (y))), the scope of ∃y is the formula ∃x(P (x) ∧ P (y)),
while the scope of ∃x is the formula P (x) ∧ P (y). In this case, we say that the quantifiers are nested because
one occurs within the scope of the other.
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∃x(P (x))∧∃y¬(P (y)). In the latter formula, two variables x and y are used, whereas
in the former formula, two occurrences of the same variables x are used.

- Consider the formula ∃x(P (x))∧∃y¬(R(x, y)). Is the second occurrence of x bound or
free? The only quantifier that could bind the second occurrence of x is ∃x. However,
if you look at the brackets carefully, you’ll see that the scope of ∃x is P (x), so the
second occurrence of x is outside the scope of ∃x. Hence, the second occurrence of x
occurs free.

2 NOTATIONAL CONVENTIONS

We shall follow some notational conventions. We shall denote formulas of predicate logic
of arbitrary complexity by means of Greek letters such as ϕ, ψ, σ, etc. (If you are curious,
here is the Greek alphabet: α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ, σ, τ, υ, ϕ, χ, ψ, ω.)

We shall write ϕ(x), ψ(x), σ(x), etc. to denote a formula of arbitrary complexity in which
the variable x occurs free. For example, consider the formula ∀x(P (x) ∧ R(y, x)). This is a
formula in which x is bound but y occurs free, so we can refer to the formula through ϕ(y).

Another notational convention is that if we write ∀xϕ(x), ∀xψ(x), ∀xσ(x), etc. we mean
that the variable x in ϕ(x), ψ(x), σ(x), etc. is universally quantified. And if we write ∃xϕ(x),
∃xψ(x), ∃xσ(x), etc. we mean that the variable x in ϕ(x), ψ(x), σ(x), etc. is existentially
quantified.

A final notational convention is that we shall use the expression ‘t’ to denote a term. A
term can be either a variable symbol x, y, z or a constant symbol a, b, c. So, the expression
‘t’ is a generic placeholder for a variable symbol or a constant symbol.

3 DERIVATION RULES FROM PROPOSITIONAL LOGIC

The rules of derivation for predicate logic include the derivation rules for propositional
logic, repeated here for your convenience:

REITERATION

(R)
ϕ
ϕ R
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RULES FOR ∧

(∧I)
ϕ ψ

ϕ ∧ ψ ∧I

(∧E)
ϕ ∧ ψ
ϕ ∧E

ϕ ∧ ψ
ψ

∧E

RULES FOR →

(→ I)

[ϕ]i....
ψ

ϕ→ ψ → Ii

(→ E)
ϕ→ ψ ϕ

ψ
→ E

RULES FOR ⊥

(⊥)

⊥
ψ

⊥

(RAA)

[¬ϕ]i....
⊥
ϕ RAAi
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RULES FOR ∨

(∨I)
ϕ

ϕ ∨ ψ ∨I

ψ

ϕ ∨ ψ ∨I

(∨E)

ϕ ∨ ψ

[ϕ]i....
σ

[ψ]i....
σ

σ ∨Ei

Concerning the application of the above rules, almost nothing changes from proposi-
tional logic. The only difference is that the Greek letters such as ϕ, ψ, σ, etc. should now be
understood as placeholders for formulas of predicate logic (and not for formulas of propo-
sitional logic). To the rules from propositional logic, four more derivation rules are added
which are specific to predicate logic.

4 DERIVATIONS RULES FOR ∀

The first two additional rules are for the elimination and for the introduction of the universal
quantifier, as follows:

(∀E)
∀xϕ(x)
ϕ(t)

∀E

(∀I)
ϕ(x)

∀xϕ(x) ∀I

RESTRICTION ON ∀I. Variables x does not occur free in any uncanceled as-
sumption on which ϕ(x) depends.

Let’s consider each rule in turn. Rule ∀E says that if you have a derivation of a universally
quantified formula ∀xϕ(x), then you also have a derivation of a formula without the uni-
versal quantifier where variable x is replaced by some term t. Recall that t can be a variable
but it can also be a constant symbol. The intuitive meaning of ∀E is this. If we can claim
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that everybody is ϕ, then we can also claim that someone in particular is ϕ. Let’s look at
an example. Suppose we can claim that everybody from Alaska is an expert skier. This
statement can be translated in predicate logic as ∀x((A(x) → S(x)), where A is the predi-
cate for being from Alaska and S is the predicate for being an expert skier. Let’s consider
a particular guy named Tyler, using the constant symbol tyler. Now, an application of rule
∀E to our case looks as follows:

∀x(A(x) → S(x))

A(tyler) → S(tyler)
∀E

All we have done is eliminate the universal quantifier and replace variable x with the con-
stant symbol tyler. If we add the additional premise that Tyler is indeed from Alaska, by
the rule → E, we can derive the conclusion that Tyler is an expert skier, as follows:

A(tyler)

∀x(A(x) → S(x))

A(tyler) → S(tyler)
∀E

S(tyler)
→ E

The above derivation rests on two uncanceled assumptions, i.e. ∀x(A(x) → S(x)) and
A(tyler).

We now turn to the second rule for the universal quantifier, namely ∀I. This is a del-
icate rule and it is important not to misunderstand it. First of all, the rule cannot always
be applied, but it only applies when a particular restriction is satisfied. The restriction is
repeated here for convenience:

RESTRICTION ON ∀I. Variables x does not occur free in any uncanceled as-
sumptions on which ϕ(x) depends.

To see the importance of the restriction, let’s consider a slightly modified version of the
above derivation, as follows:

A(x)

∀x(A(x) → S(x))

A(x) → S(x)
∀E

S(x)
→ E

∀xS(x) WRONG!

The last step in the derivation is wrong. Why? Well, it is an attempt to use the rule ∀I while
the restriction is not satisfied. Note that S(x) depends on the uncanceled assumption A(x),
which contains a free occurrence of x. This is a violation of the restriction. In contrast,
consider another derivation, as follows:

∀xA(x)
A(x)

∀E
∀x(A(x) → S(x))

A(x) → S(x)
∀E

S(x)
→ E

∀xS(x) ∀I
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What has changed here? We still have an uncanceled assumption, namely ∀xA(x), together
with the other uncanceled assumption ∀x(A(x) → S(x)). The difference here is that the
uncanceled assumptions on which S(x) depends do not contain any free occurrence of x.
In both ∀xA(x) and ∀x(A(x) → S(x)), the variables x is bound and not free. And since the
variable x does not occur free any longer, the restriction for the application of ∀I is now
satisfied.

The difference between the two derivations—the difference between the incorrect and
the correct derivation—should be intuitive. In the wrong derivation, we tried to conclude
that everybody is an expert skier from the assumption that some x is an Alaskan and that
all Alaskans are expert skiers. But that’s clearly wrong. In the correct derivation, we con-
cluded that everybody is an expert skier from the assumption that everybody is Alaskan, i.e.
∀xA(x), and the assumption that all Alaskans are expert skiers. This is a good inference.
(Of course, we can challenge the assumption that everybody is Alaskan, but that’s another
matter. If everybody is in fact Alaskan, and if every Alaskan is in fact an expert skier, it
undeniably follows that everybody is an expert skier.)

The derivation rule ∀I—together with the relevant restriction—codifies an important
feature of mathematical reasoning and of formal reasoning more generally. It is the idea
that if we can show that a certain property holds for an arbitrary object of a certain type,
then that property holds for all objects of that type. For example, if we can show that
for an arbitrary triangle the sum of its internal angles is equal to two right angles, then it
follows that for all triangles the sums of the internal angles is equal to right angles. (This is
what Euclid does in proposition I.32 of the Elements.) In other words, rule ∀I codifies the
reasoning step that moves from “for an arbitrary x , ϕ(x)” toward “for all x , ϕ(x)”.

But what is an arbitrary object of a certain type? The idea of an arbitrary object that
is referred to by x is captured in the rule ∀I by the relevant restriction. The restriction
says that x cannot occur free in any uncanceled assumptions on which ϕ(x) depends. If x
were to occur free in some uncanceled assumption on ϕ(x) depends, that would mean that
certain additional assumptions have been made about x, thereby making x not arbitrary
any longer. Now, x cannot refers to a completely arbitrary object; x refers to an arbitrary of
a certain type. After all, we are considering the formula ϕ(x), and so we are putting certain
restrictions on x, e.g. x being a triangle, or a prime number, or an Alaskan, or whatever.

5 RULES FOR ∃

(∃I)

ϕ(t)

∃xϕ(x) ∃I
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(∃Ei)

∃xϕ(x)

[ϕ(x)]i....
ψ

ψ ∃Ei

RESTRICTION ON ∃I. Variables x does not occur free in ψ and x does not occur
free in any uncanceled assumption in the sub-derivation of ψ except for ϕ(x).

Let’s consider each rule in turn. Rule ∃I is straightforward. The rules says that if you have
a derivation of ϕ(t) with t a variable or a constant symbol, then you also have a derivation
of ∃xϕ(x). This is hardly problematic. For instance, if you have a derivation that Tyler is
an expert skier, i.e. S(tyler), you can also conclude that there is someone who is an expert
skier, i.e. ∃xS(x). That’s all rule ∃I is saying.

Understanding rule ∃E is instead more difficult and subtle. In fact, some introductory
logic courses omit ∃E because it is difficult and hard to grasp. But that’s not going to happen
in this course! To begin with, it is important to see what rule ∃E allows us to do. Suppose
you have a derivation of the existentially quantified formula that there are some expert
skiers, i.e. ∃xS(x). What can you derive from ∃xS(x)? Well, in accordance with rule ∃E,
if you assume S(x) and manage to derive a formula ψ, then you can derive ψ from ∃xS(x)
while canceling the assumption that S(x) (provided some restrictions are met!). So, for
instance, suppose you assume that x is a skier, i.e. S(x). And suppose you have available the
additional assumption that every skier is a human being, i.e. ∀x(S(x) → H(x)). Through
some reasoning steps, you can arrive at the conclusion that there is a human being, i.e.
∃xH(x). Finally, through rule ∃E, you can derive ∃xH(x) and cancel the assumption that
S(x). This is what the reasoning looks like in the form of a derivation:

∃xS(x)

[S(x)]1
∀x(S(x) → H(x))

S(x) → H(x)
∀E

H(x)
→ E

∃xH(x)
∃I

∃xH(x)
∃E1

What the derivation accomplishes should be plausible. From the premise that there is an ex-
pert skier and the additional premise that all expert skiers are human beings, the derivation
establishes that there is a human being.

It is important to note that rule ∃E can only be applied provided a restriction is satisfied,
repeated here for your convenience:

RESTRICTION ON ∀I. Variables x does not occur free in ψ and x does not occur
free in any uncanceled assumption in the sub-derivation of ψ except for ϕ(x).

7



DERIVATIONS IN PREDICATE LOGIC INTRODUCTION TO LOGIC – 8 of 10

To understand the reason behind the restriction, let’s see a couple of examples of violations.
Consider the following derivation (which is a slight variant of the above derivation):

∃xS(x)
[S(x)]1

∀x(S(x) → H(x))

S(x) → H(x)
∀E

H(x)
→ E

H(x)
WRONG!

The last step is wrong because it violates the restrictions on ∃E. Variable x is free in H(x).
Why is this a wrong step? Among other things, note that one could go on and apply the rule
for the introduction of the universal quantifier and conclude that all x are human beings,
i.e. ∀xH(x). The derivation would look like this:

∃xS(x)
[S(x)]1

∀x(S(x) → H(x))

S(x) → H(x)
∀E

H(x)
→ E

H(x)
WRONG!

∀H(x)
∀I

It is clearly wrong to conclude that ∀xH(x) from ∃xS(x) and ∀x(S(x) → H(x)). Even if
all skiers are human beings and if someone is a skier, it does not follow that everybody
is a human being. So, the above derivation must be wrong. But what’s wrong in the
above derivation is not the application of ∀I. What’s wrong in the above derivation is the
misapplication of ∃E.

Here is a second example of a misapplication of ∃E (which consists of a slight modifica-
tion of the above derivation):

∃xS(x)

[S(x)]1 S(x) → H(x)

H(x)
→ E

∃xH(x)
∃I

∃xH(x)
WRONG!

The problem here is that the sub-derivation of ∃xH(x) depends on an uncanceled assump-
tion in which x occurs free, namely S(x) → H(x). Note that the problem is not with S(x)
per se, but with S(x) → H(x). The problem here is that although the formula ∃xS(x) does
not say exactly which individual satisfies S, the derivation of ∃xH(x) rests on the additional
assumption S(x) → H(x) which is about x in particular.

Looking at the above (wrong) derivation, we should ask: can we safely say that we are
deriving the conclusion ∃xH(x) from ∃xS(x) together with S(x) → H(x) and nothing else?
In other words, have we really derived ∃xH(x) from ∃xS(x) and S(x) → H(x) alone, or
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have we derived ∃xH(x) from stronger premises? In fact, we have used stronger premises.
Which stronger premises have we used? We have used the premise that S(x) where—
crucially—variable x happens to be the same variable as the variable in the other premise
S(x) → H(x). So, the stronger premise is that we are fixing on one variable x for both
S(x) and S(x) → H(x). And in deriving ∃xH(x), it was crucial that we were fixing on the
same x for both S(x) and S(x) → H(x). For suppose that instead of using S(x) → H(x),
we were using S(y) → H(y) without using the same variable x across the two premises.
If so, our derivation would not go through any longer. All in all, our derivation of ∃xH(x)
from ∃xS(x) together with S(x) → H(x) rests on something else, and it is therefore a
misapplication of rule ∃E.

In short, there are two ways to violate the restriction on ∃E. One violation is that
variable x occurs free in the formula ψ that we are attempting to derive from ∃xϕ(x).
Another violation is that variable x occurs free in some uncanceled assumption (except
ϕ(x) itself) on which the sub-derivation of ψ depends.

6 EXAMPLES

Let’s now see some examples of derivations involving rules ∀E, ∀I, ∃I, and ∃E, together
with the rules from propositional logic. The expression ` ϕ means that there is a derivation
of ϕ from no uncanceled assumption.

` ∀x∀yR(x, y) → ∀y∀xR(x, y)

[∀x∀yR(x, y)]1

∀yR(x, y) ∀E

R(x, y)
∀E

∀xR(x, y) ∀I

∀y∀xR(x, y) ∀I

∀x∀yR(x, y) → ∀y∀xR(x, y) → I1

` ∀x(A(x) ∧B(x)) → ∀x(A(x)) ∧ ∀x(B(x))

[∀x(A(x) ∧B(x))]1

A(x) ∧A(x) ∀E

A(x)
∧E

∀x(A(x)) ∀I

[∀x(A(x) ∧B(x))]1

A(x) ∧B(x)
∀E

B(x)
∧E

∀x(B(x))
∀I

∀x(A(x)) ∧ ∀x(B(x))
∧I

∀x(A(x) ∧B(x)) → ∀x(A(x)) ∧ ∀x(B(x))
→ I1
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` ∀x(ϕ(x) → ψ(x)) → (∀xϕ(x) → ∀xψ(x))

[∀x(ϕ(x) → ψ(x))]1

ϕ(x) → ψ(x)
∀E

[∀xϕ(x)]2

ϕ(x)
∀E

ψ(x)
→ E

∀xψ(x) ∀I

∀xϕ(x) → ∀xψ(x) → I2

∀x(ϕ(x) → ψ(x)) → (∀xϕ(x) → ∀xψ(x)) →1

` ∀xϕ(x) → ¬∀x¬ϕ(x)

[∀xϕ(x)]1

ϕ(x)
∀E

[∀x¬ϕ(x)]2

¬ϕ(x) ∀E

⊥ → E

¬∀x¬ϕ(x) → I2

∀xϕ(x) → ¬∀x¬ϕ(x) → I1

` ¬∀xϕ(x) → ∃x¬ϕ(x)

[¬∀xϕ(x)]1

[¬∃x¬ϕ(x)]2
[¬ϕ(x)]3

∃x¬ϕ(x) ∃I

⊥ → E

ϕ(x)
RAA3

∀xϕ(x) ∀I

⊥ → E

∃x¬ϕ(x) RAA
2

¬∀xϕ(x) → ∃x¬ϕ(x) → I1

` ∃x¬ϕ(x) → ¬∀xϕ(x)

[∃x¬ϕ(x)]1
[¬ϕ(x)]3

[∀xϕ(x)]2

ϕ(x)
∀E

⊥ → E

⊥ ∃E3

¬∀xϕ(x) → I2

∃x¬ϕ(x) → ¬∀xϕ(x) → I1
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