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Abstract

The literature on algorithmic fairness has examined exogenous sources of biases
such as shortcomings in the data and structural injustices in society. It has also
examined internal sources of bias as evidenced by a number of impossibility the-
orems showing that no algorithm can concurrently satisfy multiple criteria of
fairness. This paper contributes to the literature stemming from the impossibil-
ity theorems by examining how informational richness affects the accuracy and
fairness of predictive algorithms. With the aid of a computer simulation, we show
that informational richness is the engine that drives improvements in the per-
formance of a predictive algorithm, in terms of both accuracy and fairness. The
centrality of informational richness suggests that classification parity, a popular
criterion of algorithmic fairness, should be given relatively little weight. But we
caution that the centrality of informational richness should be taken with a grain
of salt in light of practical limitations, in particular, the so-called bias-variance
trade off.

Keywords: Algorithmic Fairness, Classification Parity, Predictive parity, Impossibility
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1 Introduction

Many decisions matter for people’s lives: whether an applicant is granted a loan;
whether a patient is given medical care; whether a defendant is placed in preventa-
tive detention. Human beings often make these decisions: bankers, doctors, judges.
But their judgment can be mistaken. An applicant in good financial standing could
be denied a loan; a sick patient could be denied treatment; someone who is not going
to commit a crime could be put in jail. Historically, these mistakes have adversely
impacted select social groups the most, racial and gender minorities, and the econom-
ically worse off.1 If human judgment is aided by machine judgment, the accuracy and
fairness of our decisions would improve—or so some argue.2 Data about every aspect
of our lives are now easily available. Individuals can be classified based on the predic-
tive attributes they possess and assigned a risk score expressing the probability that
the outcome of interest will occur. Risk scores are not infallible, of course. But—so the
argument goes—since they are based on data, predictive algorithms should perform
better than human judgment in both accuracy and fairness.

Despite this optimism, many are alarmed. Three reasons for concern exist in the
literature. First, many worry about the ripple effects of the historical data on which
predictive algorithms are trained. Defects in the data can have far reaching, harm-
ful consequences.3 Call this the distorted data argument. Second, even if the training
data were not distorted and portrayed an accurate picture, the worry about predictive
algorithms would not necessarily subside. Trends in the data reflect trends in society.
The society we are in is replete with group disparities in wealth, crime, health.4 If—as
many have argued—the status quo is shaped by structural injustice against histori-
cally disadvantaged groups, an accurate prediction would reinforce an unjust reality.5

This is especially the case when algorithmic predictions prompt a punitive or coer-
cive decision such as loan rejection or preventative detention. Call this the historical
injustice argument.6

1There is strong evidence of an association between race and differential treatment by health care
providers (McKinlay, 1996; Schulman et al., 1999; Chen et al., 2001; Petersen et al., 2002). Whether or
not these differences are explained by implicit biases is unclear (Dehon et al., 2017). On lending practises,
there is a growing body of literature documenting the impact of redlining on economic inequalities today
(Aaronson et al., 2021; Ladd, 1998). The justice system is filled with racial disparities at different stages
(Rehavi and Starr, 2014; Gross et al., 2022).

2For example, the American Civil Liberty Union of New Jersey argued that the deployment of predictive
algorithms in criminal justice can end the unfair system of bail that most disproportionately harms the poor;
see https://www.aclu-nj.org/theissues/criminaljustice/pretrial-justice-reform. For a more detailed defense
of this claim, see Slobogin (2021). The consulting firm McKinsey estimated that predictive algorithms can
save $300 billion every year in U.S. healthcare costs (Manyika et al., 2011). More generally, for the positive
impact of big data in health care, see (Raghupathi and Raghupathi, 2014).

3Data can be defective because of their reliance on proxies, for example, when arrest data are used as
proxies for actual criminal offending (Barabas et al., 2019) or when healthcare costs are used as proxies
for actual medical needs (Obermeyer et al., 2019). Beside the proxy problem (also known as measurement
problem), biases can arise during data collection, for example, when certain groups are under-sampled. For
an overview of sources of bias in the data, see, among others, Suresh and Guttag (2021). For an analysis of
the implications of biased data from the standpoint of US constitutional law, see Barocas and Selbst (2016).

4Along similar lines, Mitchell et al. (2021) draw a distinction between statistical bias (a mismatch between
the world and the sample used to train the model) and societal bias (a mismatch between the world as it
is and the world as it should be).

5Define “structural injustice” as any historically entrenched distribution of goods, benefits, powers and
advantages (or their negative correlates) among social groups, where such distribution negatively impact
the well-being of specific social groups and not others. See Powers and Faden (2019) and Young (2003).

6Deborah Hellman (2021) calls this phenomenon compounding injustice. Facts grounded in past injustices
are used as the basis for making punitive decisions in the present, thereby compounding the past injustice.
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These two arguments point to exogenous problems that lie on the input side of
things: the data used to train predictive algorithms and the unjust society from which
data originate. One might conjecture that, if distortions in the data and injustices in
society were eliminated, predictive algorithms should no longer be cause for concern.
But this conjecture would be premature. Predictive algorithms can still be the target
of what we might call an inner critique. This inner critique stems from a number
of theorems in the computer science literature about the impossibility of algorithmic
fairness. It is this inner critique that we focus on in this paper.

To state the impossibility theorems, we should begin with laying out a number of
fairness criteria of algorithmic performance. These criteria are an attempt to capture
in formal, mathematical language the requirement that a predictive algorithm should
treat people fairly. Predictive parity and classification parity are two of the most com-
mon criteria in the computer science literature. Predictive parity requires that the
rate at which an algorithm’s predictions are correct—the fraction of predictions that
are correct—be the same across groups. For example, predictive parity would be vio-
lated whenever people that the algorithm predicted would default on their loan ended
up actually defaulting, say, in 90% of the cases if they were white, but only in 60% of
the cases if they were black. Another popular criterion, classification parity, requires
that the rates at which individuals are the recipients of correct predictions be the
same across groups. If the prediction and the outcome are both binaries, this criterion
requires that the true positive and true negative rates—the fraction of truly positive
people that are predicted to be positive, and the fraction of truly negative people that
are predicted to be negative—be the same across social groups. It would be a violation
of classification parity if people who were, in an objective sense, not going to default
on their loan were erroneously predicted to default in 10% of the cases if they were
white and 30% if they were black. Stated more formally, the two criteria require the
equalization—across two distinct groups of interest—of two different conditional dis-
tributions. Predictive parity requires the equalization across groups of the conditional
distributions of the outcome of interest given the prediction.7 Instead, classification
parity requires the equalization across groups of the conditional distributions of the
prediction given the outcome of interest.8

7Formally, the algorithm’s prediction should satisfy the following equality between conditional probability
statements:

P (Y = 1 | S ≥ a,G = g) = P
(
Y = 1 | S ≥ a,G = g

′) ∀g 6= g
′
,

where Y is the binary outcome to be predicted (which can take values 1 or 0) and G is the group membership
based on a protected classification. The expression S ≥ a is the algorithm’s binary prediction of the positive
outcome Y = 1. Predictive algorithms usually make a fine-grained prediction in terms of a risk score S. The
greater the score, the greater the probability of the outcome. The algorithm’s binary prediction results by
thresholding the risk score at some value a that is considered sufficiently high. Another common criterion of
predictive parity is calibration, a more fine-grained version of equal positive predictive value. This measure
of fairness is not dependent on a decision threshold. It compares the predictive accuracy of the algorithm
across groups for each risk score, not just risk scores above the threshold. A predictive algorithm is relatively
calibrated (Chouldechova, 2017; Corbett-Davies and Goel, 2018) if

P (Y = 1 | S,G = g) = P
(
Y = 1 | S,G = g

′) ∀g 6= g
′
.

If the risk score further satisfies P (Y = 1 | S,G) = S, we say that it is absolutely calibrated (Kleinberg
et al., 2017).

8Formally, a predictive algorithm satisfies equal classification accuracy if it has the same false positive
rates across groups:

P (S ≥ a | Y = 0, G = g) = P
(
S ≥ a | Y = 0, G = g

′) ∀g 6= g
′
,
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Predictive and classification parity are group measures of fairness. They require
that differences in algorithmic performance across groups be eliminated.9 They are
plausible measures of algorithmic fairness on the assumption that differences in algo-
rithmic performance will eventuate in differences in the allocation of benefits and
burdens across groups since algorithmic predictions guide these allocations. But the
major obstacle toward satisfying these criteria is constituted by a number of impos-
sibility theorems, now well-known in the computer science literature. These theorems
show that no algorithm can satisfy all candidate criteria of algorithmic group fair-
ness, in particular, no algorithm can satisfy both predictive and classification parity.10

These theorems only require minimal assumptions: first, the algorithm can make mis-
takes; second, the two groups being compared have different base rates of the outcome
of interest, say different rates of loan defaulting. Exogenous factors, such as distorted
data or historical injustice, cannot be blamed since the impossibility theorems are a
mere mathematical consequence of the fact that the conditional distributions of two
uncertain quantities—the probability of the outcome given the prediction or the prob-
ability of the prediction given the outcome—are generally untethered. In this sense,
the impossibility of concurrently satisfying different fairness criteria can be viewed as
an inner critique of predictive algorithms.11

Reactions to the impossibility theorems have been threefold. One line of argument
emphasizes pragmatic considerations. Many in the computer science literature have
pointed out that algorithmic decisions must confront trade-offs, first between accuracy
and fairness but also between the different criteria of fairness themselves.12 Whether
one criterion of fairness takes precedence over another may depend on matters of

as well as the same false negative rates across groups:

P (S ≤ a | Y = 1, G = g) = P
(
S ≤ a | Y = 1, G = g

′) ∀g 6= g
′
.

The satisfaction of these conditions depends on a specific risk threshold that is considered high enough
to make a positive classification. Balance is another measure of classification parity which, however, does
not depend on selecting a specific risk threshold. A predictive algorithm is said to be balanced if it assigns
on average the same risk scores for people with the same positive outcome (Y = 1) or negative outcome
(Y = 0) in each group membership. In terms of expectation, balance can be defined as follows:

E (S | Y = y,G = g) = E (S | Y = y)

for any group g and outcome y = 0 or 1.
9In contrast, individual fairness is often understood as equal treatment of similarly situated individuals

(Dwork et al., 2012; Sharifi-Malvajerdi et al., 2019). This conception of algorithmic fairness tracks how
an individual is treated relative to others by constructing a counterfactual (Kusner et al., 2018). On the
apparent conflict between individual and group fairness, see Binns (2020).

10The two most well-known impossibility results are due to Chouldechova (2017) and Kleinberg et al.
(2017). An earlier result was proven by Borsboom et al. (2008). There is also a possibility result due to
Reich and Vijaykumar (2021) who show that classification parity (specifically, equal false positive and false
negative rates across groups) and predictive parity (specifically, calibration) can be concurrently satisfied.

11Some claim that different performance criteria of algorithmic fairness embody different moral commit-
ments about what fairness requires. In this sense, the impossibility theorems underscore a conflict between
different moral commitments about algorithmic fairness (Heidari et al., 2019). This interpretation is com-
patible with our own. Our claim that the impossibility theorems constitute an inner critique underscores
the fact that violations of fairness criteria can occur absent exogenous sources of bias in the data or in
society. On a more technical level, a popular explanation for why these violations of fairness criteria occur
even without exogenous biases appeals to the so-called problem of infra-marginality. As soon as two groups
have differences in prevalence—say, differences in criminality, financial stability or health—the shape of the
risk distributions of the two groups, as viewed by the predictive algorithm, will be different. This implies,
inevitably, that the rate of correct predictions will differ across groups, thus giving raise to violations of
one criterion of fairness or another (Corbett-Davies and Goel, 2018).

12On trade-offs between different fairness criteria, see Berk et al. (2021) and Lee et al. (2021).
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context.13 A second line of argument rejects altogether the dilemma raised by the
impossibility theorems and emphasizes the goal of realizing substantive fairness, as
well as ending oppression and historical injustice.14 Finally, a third line of argument
is conceptual and is prevalent in the philosophical literature. This approach resists
predictive or classification parity as adequate criteria of algorithmic fairness because
they do not genuinely capture requirements of fairness. This resistance is justified by
constructing hypothetical scenarios in which our intuitions about algorithmic fairness
(or unfairness) diverge from the satisfaction (or violation) of a fairness criterion of
interest.15

Our contribution adds to each of these lines of argument, although our focus is on
the conceptual point. We agree that common criteria of algorithmic fairness do not
fully capture what it means for predictive algorithms to be fair. But, besides offering
hypothetical scenarios as counterexamples, the current literature does not explain, in
a principled manner, why these fairness criteria fall short. Methodologically, reliance
on hypothetical scenarios can also be questioned insofar as these scenarios are not
representative of how algorithmic predictions are made. To remedy this, we construct
a more realistic probabilistic model designed to mimic how predictive algorithms are
trained on data in which group membership is causally implicated. We then examine
the model via a simulation study.

Another limitation of the existing literature on the impossibility theorems is its
primary focus on what we call criteria of performance. These criteria track algorithmic
performance in the long run: they track how often an algorithm makes mistakes (accu-
racy) and how these mistakes are distributed across groups (fairness). But besides
performance, another dimension deserves attention, what we call conscientiousness.
Compare a doctor who makes diagnoses on just few sparse symptoms and a doctor
who carefully assesses all the relevant symptoms that a patient exhibits. By taking
into account more information, the second doctor is more conscientious than the first.
Similarly, an algorithm can base its predictions on a richer or poorer set of predictive
features. The richer the information, the more conscientious the predictions.16

13On the contextuality of criteria of algorithmic fairness within a theory of justice that applies to
predictions, as opposed to decisions, see Lazar and Stone (ms).

14On this more radical approach, see Green (2022).
15In philosophy, Brian Hedden (2021) and Robert Long (2021) have provided the most discussed examples.
16The idea of conscientiousness has been discussed—under different names—in both the philosophical and

computer science literature in different ways. In the philosophical literature, the idea of conscientiousness
is closely related to what some call “the right to be treated as an individual.” This right can be understood
in an informational sense, roughly as the right to be judged on as much relevant information as what is rea-
sonably available (Lippert-Rasmussen, 2011). Others have emphasized the imperative of avoiding doxastic
negligence and collecting more information if appropriate (Zimmermann and Lee-Stronach, 2022). Another,
non-informational conceptions of the right to be treated as an individual focuses on the fair allocation of
risks and burdens (Castro, 2019; Jorgensen, 2022). In the computer science literature, some have suggested
that further screening or collecting more data about select groups can improve the fairness performance of
predictive algorithms (Chen et al., 2018; Cai et al., 2020). We are sympathetic with these approaches, but
our analysis differs in two ways. First, we are not advocating that only select groups be subject to further
screening or data gathering as this may increase surveillance of already marginalized communities. Second,
we are interested in examining how conscientiousness impact the different performance criteria of algorith-
mic fairness. As we will see, improvements in conscientiousness do not impact all performance criteria of
fairness equally (Section 3). This observation will then be the basis for an argument against classification
parity (Section 5).
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Our focus on conscientiousness paired with the simulation study will help to see
that not all performance measures are born equal. Under normal circumstances, accu-
racy and conscientiousness go hand in hand, and fairness—understood as predictive
parity—does too. Classification parity is the outlier, and this makes it a particularly
objectionable criterion of algorithmic fairness. On the other hand, all performance
measures are prone to manipulation: they can be violated or satisfied by means of ad
hoc manipulations of the characteristics of the groups being compared. In such cases,
performance measures fail to align with the intuitive requirements of algorithmic fair-
ness. We will argue that this failure is explained by the extent to which performance
measures, such as classification or predictive parity, deviate from conscientiousness.

Our contribution also helps to clarify the pragmatic point about trade-offs. It is
sometimes asserted that there is a tension between accuracy and fairness: an improve-
ment in accuracy can be detrimental for fairness.17 In addition, the impossibility
theorems mentioned earlier demonstrate that a tension exists within fairness itself,
among different criteria of fairness. If one wanted to satisfy all performance measures
of algorithmic fairness, trade-offs will be inevitable. But the extent of this inevitabil-
ity must not be exaggerated. If—as we will demonstrate—accuracy, conscientiousness
and predictive parity go together, and classification parity is the outlier, the trade-
offs between different measures of fairness as well as between fairness and accuracy
become less pressing.

Our paper does not directly address questions of historical injustice and how the
latter should inform our theorizing about algorithmic fairness. It is an under-explored
topic in the literature to what extent performance criteria such as classification and
predictive parity reflect inequalities in society.18 This relationship is unlikely to be
straightforward, however.19 More work certainly needs to be done, but our simulation
study shows that the group for which the violation of a performance criterion is most
detrimental is not fixed in advance. For example, a higher rate of false loan rejections
may affect the group with higher prevalence of loan default or the group with a lower
prevalence, where one or the other may be the disadvantaged group. So, given this
variability, violations of algorithmic fairness criteria need not reflect in a systematic
way patterns of structural inequalities across groups in society.

The plan is as follows. Section 2 provides the technical and conceptual backdrop
of our investigation, specifically, the contrast between idealized and empirical risk.
Section 3 describes the probabilistic model and the computer simulation. Section 4
argues that performance criteria of fairness cannot be divorced from questions of

17On the trade-off between accuracy and fairness, see Menon and Williamson (2018). Kearns and Roth
(2019) discuss the concept of a Pareto frontier between accuracy and fairness.

18The literature on causal criterion of algorithmic fairness has begun to address these questions, see e.g.
Chiappa and Gillam (2018).

19For one thing, group differences in prevalence—which drive in part violations of predictive and classi-
fication parity—are not necessarily due to structural injustice. There exist several layers of inequality that
may exist in society. Some inequalities are certainly due to structural, historical injustices and discrimi-
nation, but others may be less pernicious and due to differences in preferences or priorities among groups
(Lee et al., 2021). At the same time, violations of fairness performance criteria could still cause harm even
without historical conditions of structural injustice. Consider two communities whose wealth happens to be
different, but not for reason of structural injustice. If a community experiences, say, a higher rate of false
loan rejections, this difference in the long run may entrench their economic disadvantage. Or suppose the
algorithm’s predictive accuracy is worse for one community compared to another. This will have negative
reputational costs, for example, if one community is viewed as less capable of repaying loans.
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conscientiousness. Section 5 argues that classification parity, a popular performance
measure of algorithmic fairness, has limited significance. Section 6 discusses some
complications, both conceptually and practically. Section 7 situates the notion of
conscientiousness within the broader distinction between performance criteria and
attitudinal criteria of algorithmic fairness.

2 Individual risk and its estimation

To predict an unknown fact about an individual, the decision maker who does not
rely on their own hunches and intuitions can take advantage of a predictive algorithm,
also called—perhaps more appropriately—risk model. A risk model or predictive algo-
rithm is an abstract, evidence-based representation of the correlations between certain
features (attributes, traits, predictors) an individual may possess and an outcome
of interest. To understand how predictive algorithms can make mistakes and why
their performance can differ across groups, we pry open this conceptual construction
to examine its inner workings. We focus in particular on the degree of informa-
tional richness that is the basis of the algorithmic estimation of the risk ascribed to
individuals.

We think of each individual as characterized by an infinite collection of measurable
attributes, features or traits, denoted as ~X∞ = {X1, X2, . . .}. This infinite collection
encompasses all information that ever exists about this person, including demographic,
genetic, behavioral and psychological data at any given time point. This information
can be so detailed to uniquely characterize an individual. That is, knowing ~X∞ is
equivalent of knowing the individual, and indeed we will denote the individual as ~X∞.
The unknown binary outcome we wish to predict about the individual is denoted by
Y . For example, Y may denote whether an applicant will default on their loan (Y = 1)
or not (Y = 0).

Presumably, there exists an objective relationship between an individual’s
attributes ~X∞ and the outcome Y . This relationship could in principle be captured by
S∞, the idealized risk score of the individual. More precisely, the idealized risk score
is denoted by

S∞

(
~X∞; θ∗∞

)
,

where θ∗∞ = (θ∗1 , θ
∗
2 , . . . ) is the ideal value of the (possibly infinite-dimensional) param-

eter, which governs in the finest detail the relationship between the idealized risk and
the infinite set of attributes ~X∞. The notation emphasizes the functional dependence
of the idealized risk score on both ~X∞ and θ∗∞. In contexts where this dependence is
not important, we simply write S∞ for short.

The idealized risk score (idealized risk, for short) is the best probabilistic descrip-
tion of the individual’s outcome Y . Once the value of the individual’s idealized risk has
been learned, no additional information can be more indicative about the unknown
value of Y . There is a distinction between two ways through which the modeler may
conceptualize the meaning of the best probabilistic description, one deterministic and
one stochastic. On the first conceptualization, the idealized risk S∞ is thought to track
the outcome Y perfectly. That is, S∞ is either zero or one, and Y = S∞. Had it been
possible for the modeler to access the infinitely rich information about the individual,
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the modeler would know the outcome for sure. By contrast, the stochastic conceptual-
ization stipulates that while there is nothing more that can be learned about Y beyond
S∞, knowing its value still does not allow us to pin down the outcome with certainty.
In other words, there is some randomness in the individual’s outcome that just cannot
be fully tamed. Under this conceptualization, S∞ is a probability whose value is any-
where between zero and one.20 For most of the paper, we will assume the deterministic
conceptualization, but discuss the implications of the stochastic one toward the end.

Regardless of the conceptualization of the idealized risk, the infinitely detailed
attribute collection ~X∞ remains a hypothetical construction. In reality, only a finite
subset of the content of ~X∞ can be accessed, say p dimensions of it. Denote the finite
accessible information about an individual by ~Xp. The dimensionality p may reflect the
practical limitation of how much information can be collected about an individual or
the modeler’s intention to include only certain attributes that are deemed admissible.
For all individuals who share the same accessible information ~Xp, the modelers supplies

an estimated empirical risk, denoted by Ŝp. More precisely,

Ŝp

(
~Xp; θ̂p

)
,

or Ŝp for short, whenever the dependence on its arguments ~Xp and θ̂p may be sup-

pressed. For a binary outcome Y , the empirical risk Ŝp is a fractional number between
zero and one, with a larger value suggesting Y = 1 as more likely.

To carry out the estimation of individual risk in practice, the modeler must engage
in the postulation, fitting, and selection among a collection of candidate risk models.
To do so, they must operate within realistic bounds of their domain knowledge, avail-
able information, and computation capacities. So, throughout this process, they have
several practical choices to make. They must determine the appropriate dimension
p, what we will call the informational richness of ~Xp. They must also determine the

functional form of the risk model to be used alongside the input ~Xp. Typically, the risk
model is assumed to belong to a family of functions, to allow for a good approxima-
tion to the idealized individual risk. The family from which the risk model is chosen
is capable of capturing increased complexity as the richness of the attribute set ~Xp

increases, while commanding a larger parameter space as well. Lastly, the value of the
parameter that governs the function must also be determined. The hat notation in Ŝp
signifies we are dealing with estimates from the observed data that bear variability
due to the data collection process.

We take this conceptual framework to be relatively uncontroversial. The upshot
here is that the objective of algorithmic prediction is to approximate, in the best way
possible, the idealized individual risk (the objective risk that each individual will do
this or that) by means of the empirical individual risk (the risk that each individual
will do this or that based on the information and modeling assumptions available).

In light of this conceptual framework, it is instructive to revisit an example by Brian
Hedden (2021). This example is part of an argument against nearly all performance

20What’s implied of the relationship between Y and S∞ is also weaker than the equality relationship, but
one reasonable requirement is that the idealized risk satisfies absolute calibration: P (Y = 1 | S∞) = S∞,
where the probability P reflects the untamed randomness inherent in the outcome Y .
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criteria of algorithmic fairness. Hedden describes a scenario in which each person is
given a biased coin, reflecting their objective risk (say, for concreteness, the person’s
objective risk of committing a crime). Suppose a predictive algorithm can faithfully
track the objective risk of each person and in this way can assign an equivalent risk
score. There is no mismatch between objective risk and the algorithm’s risk score. By
thresholding the risk score at some value, the algorithm can make binary predictions
about the outcome. But now suppose people are sorted into two rooms, and it just
so happens that the distributions of the objectives risks (and thus of the algorithm’s
risk scores) across the two rooms are different. As a consequence, the algorithm’s
rates of false positives and false negatives across the two rooms—so long as the same
threshold is used—will differ. Classification parity is thus violated. Since the objective
risk distributions differ across the two rooms, predictive parity will also be violated
for analogous reasons.21 Hedden points out that such violations of classification and
predictive parity do not make the algorithm unfair. Hence, these criteria cannot be
criteria of fairness.

Some have objected to this argument because it is artificial and removed from the
practice of algorithmic predictions.22 We think this criticism is well-founded, but we
also agree with Hedden that the algorithm in the scenario is intuitively fair. Why,
exactly, should we think so? Hedden appeals to our intuitions. But there is a more
principled answer: the predictive algorithm in the example does what it is supposed to
do in the best way possible and does that equally well across every single individual.
The algorithm has all the information it can possibly have about each individual, and
that information is contained in a perfect approximation of the objective bias of the
coin, what we called the idealized individual risk. So the empirical risk is the same
as the idealized risk, for each individual. The predictive algorithm can do no better.
That is why we judge it to be fair.

Still, there is no denying that Hedden’s scenario has limited significance because it
is artificial. There are at least two reasons for that. First, the distribution of the coin
biases just so happens to be different across groups and is assumed to be causally irrel-
evant. That the distribution of the biases is different across the two groups—different
rooms in Hedden’s story—is key to bring about violations of most fairness criteria,
but is also irrelevant for everything else.23 In reality, the distributions of predictive
features will differ across groups, and group membership is often causally implicated

21Hedden’s argument does not assume that the people in the two rooms have different base rates. The
distribution of their risks is assumed to be different, however. This fact then triggers a violation of the
performance criteria of fairness. This is a consequence of the problem of inframarginality; see footnote 11.

22For a more extensive critique, see Vigano’ et al. (2022).
23Another scenario in the philosophical literature, due to Robert Long (2021), makes a similar assumption.

Suppose you are an undergraduate student in a large course. For the purpose of grading your homework, you
could be assigned to section 1 or section 2. Homework is graded exactly in the same way in the two sections,
but it just so happens that the base rate of true A papers is higher in section 1 than in section 2. If the
predictive accuracy of the grades is the same across sections, the rate at which true A papers are correctly
graded will differ across the two sections. So there will be a disparity in classification errors across the
two sections. But, Long argues, this disparity should not raise fairness concerns. Suppose, for concreteness,
that true A papers in section 2 are incorrectly graded more often than in section 1. It would be odd for a
student in section 2 to complain they were unfairly treated because true A papers were incorrectly graded
in section 2 more often. Had the student been in section 1, they would have been graded in the same way.
They would have gotten the same grade since being in one section or another is irrelevant for how students
are graded. The counterfactual hold simply because group membership is causally irrelevant.
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in this difference. Second, no algorithm can perfectly approximate the idealized indi-
vidual risk and thus algorithms will usually rely on the empirical individual risk. Our
discussion in what follows will remove the sources of artificiality just identified. We
will ask the following question: how do fairness criteria such as classification and pre-
dictive parity perform in more realistic contexts—that is, assuming that (1) groups
membership is causally relevant and (2) predictive algorithms rely on the empirical
individual risk? The computer simulation in the next section will allow us to address
this question.

Before moving on, a clarification about the need of relaxing the idealizations in
Hedden’s example is in order. One might argue that if a certain criterion of fairness
is shown to be inapplicable under idealized conditions, then a fortiori the same cri-
terion would be inapplicable under more realistic conditions. But this argument is
too quick. Even if—as Hedden has shown—predictive algorithms necessarily violate
several performance criteria under idealized conditions and this violation is not intu-
itively unfair, the same violation under more realistic conditions may still count as
unfair. For example, a predictive algorithm whose risk scores perfectly track the objec-
tive risks may count as intuitively fair even if it violates predictive parity. And yet,
when the algorithm’s risk score no longer track the objective risks, the algorithm need
not be regarded as intuitively fair. Under more realistic conditions, the violation of
classification parity may become morally problematic.24

3 The simulation

We now turn to the computer simulation setup to mimic the mathematical setup
introduced in the previous section.25 As already noted, an individual in principle
possesses an infinite number of attributes that make up the specific individual they
are. For the purpose of illustration, the simulated dataset represents each individual
as possessing a finite number of observable and measurable attributes, (X1, . . . , X20),
each taking different numerical values. While each individual is uniquely different
in theory, under the assumed model for data generation, two individuals could well
possess the same observed attributes due to their finite dimension.

Data generation

In the simulated population of individuals carrying different attributes, some will bring
about the action or outcome we are interested in predicting—defaulting on a loan,
committing a crime or developing a medical condition—whereas others will not. As a
matter of fact, certain combinations of attributes give rise to the outcome of interest,
while other combinations do not. To represent this, we presume a generative model for
the idealized risk, which associates all the individual’s attributes to their outcome. This
will be the oracle risk model for the simulation. The input to the generative model is a
combination of values of the attributes, such as a certain level of income, a certain age,
etc. The idealized risk S∞ is a deterministic function of the finite-dimensional X’s for
fixed values of the parameter. The function encodes stronger or weaker contributing

24For a similar point, see Lazar and Stone (ms).
25The R code of the simulation is available with the authors.
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relationships between the attributes and the outcome. The generative model is chosen
to be

S∞ = 1
(
Probit−1 (β∗0 + β∗1X1 + · · ·+ β∗20X20) ≥ 0.5

)
, Y = S∞, (1)

where the X’s are the input attributes, Y the outcome, and β∗’s the coefficients
governing the relative contribution of the attributes towards the uncertain outcome.
That is, given a certain combination of values of the attributes, the function outputs 1
or 0, which in turn determines the outcome. Here, the function between the idealized
risk and the outcome is assumed to be deterministic: any two individuals possessing
the same combination of attributes will either both bring about the outcome (value
1) or not (value 0).26

Group disparities

For simplicity, we are assuming there are only two groups we are interested in, labelled
generically group 0 and group 1. In the simulation, group membership is not one of
the attributes (independent variables) used to generate the outcome. The correlation
coefficients associated with the attributes are the same for individuals in both groups.
The model generating the outcome is, in this sense, group-blind. Despite that, the
prevalence of the outcome of interest (say criminal activity, loan defaulting or medical
condition) still differs across groups in the simulation. Even if the process generating
the outcome is group-blind, the simulated data show group disparities in the distri-
bution of certain attributes and consequently in the distribution of the outcome of
interest. This should not be surprising. In fact, it reflects a familiar pattern. Attributes
such as income, education, age may contribute to bringing about a certain outcome.
These attributes will also be correlated with protected attributes such as race or gen-
der, even though race or gender need not be directly causally implicated in bringing
about the outcome.

To model this setting, some attributes in the simulation depend on group member-
ship, while others do not (Figure 1). Thus, the shape of the distribution of the values
of the group-dependent attributes differs by group, while it is the same for the group-
independent attributes (Figure 2). And since the distribution of certain attributes is
different across groups and the attributes influence the occurrence of the outcome, the
two groups have different prevalence rates. So, in the simulation—and unlike Hedden’s
hypothetical scenario—the difference in prevalence rates, is not a fortuitous fact. It is
explained by differences in group-dependent attributes.

Fitting the risk model(s)

Once the simulated data are given, we can make inferences from these data as is usu-
ally done in statistics and machine learning. In making inferences, we are attempting
to recover to the extent possible the true generative model which, from the input

26Hedden in the coin example assumed that the relationship between idealized individual risk (the objec-
tive chance or bias of the coin) and outcome was stochastic. Each person was associated with a biased coin
and the probability of the outcome was determined by the bias. But predictive algorithms need not be
thought as working that way. The relationship between idealized risk and outcome can also be deterministic.
Here we assume that the relationship is deterministic but relax this assumption later in the paper.
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Fig. 1 Graphical representation of the data generating mechanism of the simulation study. The
arrows indicate the order of simulation. S stands for the idealized risk score based on all the attributes
that make up an individual. The same graph can be used to guide the appropriate specification of
the risk model class, in which case S may also stand for the empirical risk score.

Fig. 2 The empirical distributions of the standardized values of a group-dependent feature (left)
and a group-independent feature (right), plotted by group membership.

attributes, returns the outcome via the correlation coefficients. To this end, we use
probit regression to create our representation—the empirical model—of the true gen-
erative model. A common machine learning algorithm, probit regression is naturally
suited to our task of predicting a binary outcome, such as defaulting on a loan or
committing a crime. We train the probit model on a subset of simulated data, call it
the training set. The fitting process finds the optimal coefficients for the model, in the
sense that it chooses the parameter value that maximizes a pre-determined objective
function.27 The remaining part of our simulated data will be used to test our model,
call it the test or validation set.28

27For the probit regression model that we examine in this paper, the objective function is simply defined
as the data likelihood, rendering maximum likelihood estimation that is guaranteed to consistently and
asymptotically efficiently recover the true parameter values in our setting. Other definitions of the objective
function, such as those incorporating regularization, may be employed in practice.

28To make the simulation more realistic, we vary the composition of group 0 vs group 1 records in the
training and the test datasets. In the training set, 60% of the records are from group 0, whereas in the test
set, 40% of the records are from group 0. This mimics the possibility that the training and the test sets may
over-sample or under-sample some of the groups, so that their sample composition departs from that of the
population. Since this variation merely perturbs the group proportion and maintains the ratios between the
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In constructing the empirical risk model via probit regression, we considered a
number of variations: number of attributes (or predictors); group-dependent vs -
independent attributes; size of the training data; and possible mispecifications of the
model. We fit a sequence of possible models, some consisting of none or just one true
attribute as predictor, all the way to a model consisting of all true attributes. True
attributes are those that, as a matter of fact, bring about the outcome of interest in
the generative (oracle) model. We also fit a a collection of models, each consisting of
a varying number of predictors that are or are not correlated with group, arranged
in a different order. We trained our models on training sets of difference sizes. We
did not assume that the smaller data set is biased or distorted, only that it has fewer
observations. Finally, we fit a collection of models that utilize partially mis-specified
predictors.

4 Performance Criteria and Conscientiousness

What do we learn from the simulation? A number of trends emerge. First, informa-
tional richness goes hand in hand with predictive accuracy. The more true predictors
are used by the risk model, the more accurate the risk model (Figure 3). Accuracy
here refers to the “closeness” between the actual value of the individual risk that is
assumed to exist, and the algorithm’s best judgment of its value.29 We take informa-
tional richness to be an indicator of how many true predictors were used in the risk
model.30 This is a simplification, but is the most salient way to track conscientious-
ness under the chosen simulation setting. We should note that the seemingly obvious
observation that informational richness correlate positively with accuracy shall not be
taken for granted. Indeed, an increase in accuracy with increasing data is not automat-
ically obtainable for every risk model, but only for those models that are well-designed
and thoughtfully estimated (more on this in Section 6).

The second trend is that, the more accurate the risk model, the better its per-
formance in terms of predictive parity, one of the key formal criteria of algorithmic
fairness (Figure 4). Recall that predictive parity requires that the fraction of correct
algorithmic predictions be the same across the relevant groups of interest. Thus, we
see a strong monotonic trajectory that is common to three different indicators: greater

positive versus negative outcomes within each group identical across the training and the test sets, it does
not reflect an outcome-biased sampling scheme and does not constitute an instance of distorted data.

29A specification of a loss function is the standard procedure to measure accuracy. The loss function
embodies the assessment of closeness between the risk model S and the true outcome Y it is intended
to predict. As risk models are often probabilistic in nature, the loss function to examine is an expected
predictive loss. Thus, the assessment of closeness are usually defined using the language of expectation:

E
(
L
(
Sp

(
~Xp; θ̂p

)
, Y

))
,

where the expectation may be taken over many sources of uncertainties. A common choice of the loss function
is the squared error loss, L (a, b) = (a− b)2. The squared differences for each prediction are summed and
divided by the total number of predictions (or the total number of individuals about whom a prediction is
made). This computation gives the average squared error loss. The lower the loss, the more accurate the
model. The square error loss is known as the Brier score. It is a strictly proper scoring rule, and is the
loss function employed in this paper. There are other choices of loss functions that may be particularly
indicative of model performance in different contexts, such as the Area Under Curve (AUC) or the Matthew
correlation coefficient.

30Recall that true attributes are those that, as a matter of fact, bring about the outcome of interest in
the generative (oracle) model.
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Fig. 3 Out-of-sample predictive squared error loss as a function of the number of predictors. Models
represented by the green curve use a large training set (n = 105) with the correct predictor vari-
ables, for which the group-dependent and group-independent attributes are entered in a mixed order.
Orange: same as green but a small training set (n = 100) is used. Magenta: same as green but the
group-independent attributes (12 in total) entered before the group-dependent attributes (8 in total).
Purple: same as green but six of the predictors (circled) are mis-specified. The only empirical model
that reaches perfect accuracy is represented by the last point on both the green and the magenta
curves.

Fig. 4 The predictive parity of the empirical risk models as measured in terms of the positive
predictive value (PPV). Left panel: models are trained according to the standard simulation setup
(green curve of Figure 3) with a large training set and correct predictors entering into the model in a
mixed fashion. Right panel: the group-dependent (but correct) features are excluded for the first 13
models.

informational richness means better accuracy as well as better fairness if the latter is
understood as predictive parity. This monotonic trend exists assuming several ideal-
izations as part of the simulation, for example, that all predictors are true predictors
of the outcome of interest.

The outlier here is classification parity, another popular measure of algorithmic
fairness. So the third trend that emerges from the simulation is that classification
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Fig. 5 Classification parity as measured in terms of false positive rate, false negative rate and
imbalance for the sequence of empirical risk models using a large training set and the correct predictors
(left; corresponding to the green curve of Figure 3) versus the partially misspecified predictors (right;
corresponding to the purple curve). Classification parity is perfect only in two extreme scenarios:
either the empirical model has perfect accuracy (rightmost point in left figure) or the worst accuracy
(baseline; leftmost point in both left and right figures).

parity behaves erratically. Recall that classification parity, unlike predictive parity,
requires that the rate at which people are correctly classified as ‘positive’ or ‘negative’
be the same across groups. Classification parity does not monotonically improve as a
result of better accuracy and richer information. It is achieved when the risk model
relies on no predictors at all and consequently when the model’s accuracy is at its
worst. Tossing a fair coin to decide how to classify individuals would always deliver
classification parity. Classification parity can also be achieved with full information
and perfect accuracy. As we learn from our simulation, however, anything between full
and null information fails to deliver classification parity. But, unlike predictive parity,
adding more predictors may reduce classification parity in some cases and improve it
in other cases (Figure 5).

These trends show that achieving classification parity conflicts with the objective
of achieving an accurate prediction of the outcome of interest. The same conclusion
does not hold for the other metrics of fairness performance, in particular predictive
parity. This fact is a good reason to be wary of classification parity as a measure of
algorithmic fairness. We will spell out an argument to this effect in the next section.
But before doing that, it is paramount to situate performance criteria of fairness in
relation to what we have been calling conscientiousness and informational richness.

Conscientiousness is a function of all aspects that are under the control of those in
charge of constructing the risk model. One salient aspect of conscientiousness is the
number of true predictors used in the risk model, what we have called informational
richness. Another aspect is the representativeness of the data. A third aspect still
is the selection of the appropriate model along with its parameters. For simplicity,
we focus on informational richness, keeping in mind that this is just one dimension
of conscientiousness. This perspective affords us a new reading of what is going on
in some of the counterexamples in the philosophical literature against performance
criteria of fairness.
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Recall Hedden’s example in which people are assigned coins with different biases
(the objective risk) and the predictive algorithm assigns risk scores to each per-
son based on these biases. Hedden shows that playing with differences across two
groups of interest—differences in the distribution of objective risks or differences in
prevalence—is enough to ensure that many performance measures are violated (see
earlier discussion in Section 2). But this observation also works in the other direction:
playing with differences across groups can ensure that certain performance measures
are satisfied. For suppose a credit algorithm violates equality of false positive classi-
fication across two groups, say, group G = 1 has a higher rate of false positives than
G = 0. To correct this disparity, a bank decides that the pool of applicants from G = 1
should include more people who are credit-worthy and who can be easily classified as
such, thanks to characteristics such as stable income and timely credit card payments.
Because of this, the false positive rate for G = 1 will go down and be equalized to that
of group G = 0. The same manipulation can be carried out to ensure compliance or
violation of other performance criteria of fairness.

So, violating as well as satisfying performance criteria of algorithmic fairness some-
times comes relatively easily provided one artificially changes in the right way the
composition of the two groups being compared. When these artificial changes are
made, fairness criteria of performance appear to be divorced from our intuitions about
fairness. After all, ad hoc manipulations should have no effect on the fairness of the
algorithmic predictions. This is so—we hold—precisely because artificially changing
the composition of the groups does not require an improvement in conscientiousness.
Sometimes compliance with performance criteria of fairness is even obtained by openly
disregarding conscientiousness. Consider calibration, a form of predictive parity. Sup-
pose the prevalence rate of the outcome of interest in group G = 1 is 70% and only
40% in G = 0. A predictive algorithm could assign a risk score of .7 to every person
in G = 1 and .4 to every person in G = 0. The algorithm would be calibrated, since
the fraction of people who are actually positive in each group would correspond to
the score assigned to them.31 But this calibration could hardly be indicative of a fair
algorithm.32 It could not be indicative of fairness—we hold—precisely because the risk
score was estimated in a coarse manner, most likely giving up information available,
an open violation of conscientiousness.

Should we then give up on performance criteria of fairness and focus exclusively of
conscientiousness? This would be too quick. As seen above, accuracy, conscientiousness
and predictive parity go hand in hand. So an improvement along one dimension can be
indicative of an improvement in another dimension. And sometimes compliance with
performance criteria may be more easily verifiable than a multifaceted idea such as
conscientiousness or informational richness. Still, if it is clear that no improvement in
conscientiousness or accuracy has taken place, the improvement in predictive parity
must be the result of a form of manipulation that has little to do with the fairness of
the algorithm.

The case of classification parity is different, however. For compliance with this
performance criteria may sometimes even require one to sacrifice conscientiousness

31On the definition of calibration, see footnote 7.
32A similar example was given by Corbett-Davies and Goel (2018) in a seminal paper on algorithmic

fairness.

16



and base one’s prediction on a smaller set of predictors. Unlike predictive parity,
classification parity comes into open conflict with accuracy and conscientiousness. This
is a strong reason to dispense with classification parity altogether. This is the topic of
the next section.

5 Against Classification Parity

We consider two proposals for defending classification parity, and we find both of
them unsatisfactory. First, classification parity might be an appealing criterion of algo-
rithmic fairness insofar as it tracks the comparative probability of misclassification
to which people from different groups are subject. On this interpretation, classifica-
tion parity is bottomed in the expectation that people from different groups should
have equal prospects of misclassification, where such prospect is understood as the
probability of misclassification. That people in minority groups are more likely to be
misclassified because of their group membership seems unfair, especially when a higher
probability of misclassification translates into a higher risk of harm, such as being
erroneously placed in preventative detention.

But deviations from classification parity do not necessarily entail an uneven allo-
cation of the prospects of misclassification across individuals belonging to different
groups of interest. Here, what we mean by ‘group’ is specifically the result of applying
a protected category such as race or gender. Take an individual in a minority group
and compare this individual with another who possesses the same predictive features
but belongs to a non-minority group. These two individuals will be treated the same,
either correctly classified or not. This is just how algorithms work: people with the
same predictive features are treated the same. So one individual would not be more
likely to be misclassified than the other, even though they belong to different groups.33

In the aggregate, as our simulation shows, individuals in one group will be more
or less often misclassified than individuals in another group, assuming the base rates
of the outcome of interest differ between the two groups. Thus, one might argue that,
because of these differences in the frequency of misclassification, the individuals in
one group are more likely to be misclassified than the individuals in another group.
But, crucially, these judgments of probability hold for average individuals who are
described not by the full set of features available to characterize them. The assessment
of the probability of misclassification should instead be relative to the most specific
description available to the algorithm. This description will not be uniquely individual-
izing, but will likely include both group-dependent and group-independent predictive
features. In this case, individuals who belong to different groups and are otherwise
similar under the most specific description cannot be subject to uneven prospects of
misclassification.

33Long (2021) makes the point that group differences in false positive rates do not track group differences
in the risks (prospects) of error. To make this point, Long relies on a hypothetical case (see footnote 23)
in which group membership is causally irrelevant to whatever features are used by the algorithmic to make
its predictions. The argument here does not make this assumption. In our simulation study (see Section 3),
group membership is causally implicated in bringing about some of the predictors used by the predictive
algorithm.
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In response, some might object that this argument looks at classification parity
too narrowly, in isolation from the larger trends in society. Violations of classifi-
cation parity can very well be an indication of antecedent group-based systemic
disadvantage—that people who are worse-off are deprived of opportunities even when
they should not be. Suppose, for the sake of illustration, that black people described
at the most individualized level from the perspective of the predictive algorithm—say,
viewed in light of their income, health, education—are not subject to a higher prob-
ability of false loan rejection compared to similarly situated white people. And yet,
suppose black people on average—not described at most individualized level—have a
higher probability of false loan rejection. A plausible explanation for this violation of
classification parity is that black people at an antecedent stage of life had lower chances
to have access to adequate income, education, health care. These lower chances are
reflected into higher rates, on average, of false loan rejections against black people
compared to white people.

The above illustration suggests that, far from being morally irrelevant, violations
of classification parity reflect larger disparities in societies. But how general is this
phenomenon and does it follow a predictable pattern? Some have claimed that the
group with higher prevalence—which, in some contexts, is the disadvantaged group—
will suffer higher rates of false positives and lower rates of false negatives, which
may entail higher rates of police stops, jail times, and mortgage rejections.34 If the
group subject to a higher rate of false positives and a lower rate of false negatives is
the disadvantaged group, violations of classification parity would follow a predictable
pattern that mirrors larger social inequalities.

Our simulation, however, shows a more complex picture. Depending on the type of
predictors used by the algorithm—group-dependent or group independent features—
the group with higher prevalence may be subject to a lower rate of false positives and
a higher rate of false negatives, as is apparent by comparing Figure 5 and Figure 6. So
classification parity need not systematically mirror larger disparities in society. Per-
haps the argument here is that classification parity matters because its violation tends
to entrench historical injustices in societies along racial or gender lines. But note that
classification parity is the conjunction of two requirements: equal false positive and
equal false negative rates. Classification parity would be violated whether a minority
group is subject to a higher or lower rate of loan false rejections. Arguably, only a
higher rate would entrench injustices in access to credit to the detriment of a minority
group. A lower rate of loan false rejections could actually disrupt historical injustices.
In any event, a more careful analysis of the relationship between historical injustices
and violations of classification parity is needed.

So, to summarize, we contend that classification parity, as a criterion of algorithmic
fairness, should be given limited weight. Our claim rests on three observations. First,
the simulation shows that pursuing classification parity, unlike predictive parity, is a
somewhat erratic goal, as it may conflict with improving accuracy and informational

34For example, consider Northpointe’s answer in (Dieterich et al., 2016) to ProPublica’s accusation in
(Angwin et al., 2016) that COMPAS is racially biased. COMPAS is an algorithm used in several jurisdictions
in the United States to make predictions about recidivism. Northpointe alleged that, since the prevalence
of criminality among black people is higher, false positives will also be higher and false negatives will be
lower. Long (2021) makes the same claim with the qualification that it holds if (a) the algorithm meets
predictive parity and (b) it applies the same decision threshold for different groups.
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Fig. 6 If all true predictors that are correlated with group membership are excluded from the
empirical model (the first 13 points on each curve), the group with a higher prevalence (here G =
1) receives a lower false positive rate and a higher false negative rate. This is a departure from
classification parity, albeit in the opposite direction, compared to the models in Figure 5 for which
all predictors, true or otherwise, enter in a mixed order regardless of their dependence on group.

richness. In addition, its erratic behaviour is paired with the fact that classification
parity does not track any tangible disparity in the prospects of misclassification across
individuals in different groups. Finally, as our simulation shows, violations of classifi-
cation parity need not always go to the detriment of the disadvantaged group. They
may entrench as well as disrupt historical injustices. So, the balance of reasons weighs
against classification parity as an intuitively appealing criterion of algorithmic fairness.

We conclude this section by pointing out that—inevitably—predictive algorithms
will subject people to uneven prospects of mistaken classification, but not in the way
that violations of classification parity might suggest. This problem is pervasive, but
we think it is best addressed by reasserting the centrality of informational richness.

Suppose we compare two groups of individuals: one group comprises people who
possess all features that are positively correlated with the outcome and the other group
comprises individuals who possess all features that are negatively correlated. Suppose
we select only people from these two groups that will not bring about the outcome
of interest, such as defaulting on a loan or committing a crime. Still, because of the
different features they possess, the people in one group will be incorrectly labeled as
‘positive’ and the others correctly labelled as ‘negative’. Thus, the people in the two
groups are subject to uneven prospects of misclassification.35 This disparity raises a

35For an argument about uneven prospects of mistaken convictions in criminal trial and its implications
for fairness, see Di Bello and O’Neil (2020). The argument (roughly) is this. Suppose, for example, there
is profile evidence that shows that low socioeconomic status is positively correlated with the crime of drug
trafficking. If you are on trial for drug trafficking and are of low socioeconomic status, should this profile
evidence be introduced as evidence against you? It would seem unfair to present this evidence against you.
One way to make sense of this unfairness is to realize the following fact: if you were innocent, you would
be mistakenly convicted with a greater probability than those of higher socioeconomic status against whom
the same profile evidence could not be used as incriminating. After all, if the profile evidence were added to
other evidence available against you at trial, this addition may tip the balance of the evidence in favor of a
conviction. So, in this context, if you were an innocent facing trial, you would be more likely to be mistakenly
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fairness concern, but one that has little or nothing to do with violations of classification
parity. The disparity at issue concerns individuals viewed at the most specific level
of description available. The disparity cuts across protected categories and may occur
within the same protected group.

The problem for predictive algorithms just identified stems from the reliance on
correlations between a select set of features and an outcome. Some individuals who are
factually negative will be indistinguishable—from the point of view of the algorithm—
from some factually positive individuals and thus the algorithm will classify them the
same. This problem can be avoided by increasing the ability of the predictive algorithm
or risk model to distinguish between otherwise indistinguishable individuals. A more
fine-grained set of predictors could tame the unavoidable fact that certain individuals,
described in the most specific way, are subject to uneven prospects of misclassification.
But such refinement might not always be possible in practice, as we discuss in the
next section.

6 Cautionary warnings

This paper focused on the centrality of informational richness and more generally
conscientiousness. Risk models make predictions about individuals on the basis of
a set of predictors. The greater informational richness, the greater the accuracy of
the risk model, the greater its predictive fairness. So, informational richness is the
engine that drives improvements in the performance of a predictive model, in terms of
model accuracy and fairness. The results from the simulation make the centrality of
informational richness vivid. The outlier here is classification parity whose performance
is erratic.

But the centrality of informational richness should be qualified, and this final
section adds some cautionary warnings. The first warning is that there are two sources
of uncertainty that predictive algorithms or risk models should attempt to contain:

(a) A risk model will not be entirely correct whenever not all true or relevant predic-
tors are included in it or some of the predictors included in the model are not true
or relevant predictors. Call this informational uncertainty. This uncertainty is pro-
gressively eliminated as the algorithm knows more and more aspects of what should
be known.

(b) Another source of error for the predictions made by the risk model is data uncer-
tainty. Even if the data is unbiased and representative, it could still be too small
to be used to construct a risk model that makes reliable predictions.36

These two sources of uncertainty form a trade-off. It is a good idea to base predictions
on as many true predictors as possible. This will reduce informational uncertainty.
Gathering more information is in principle always possible, but statistical inference
faces an inescapable limit when it is applied to the behaviour of individuals. Even

convicted. The analogy with algorithmic predictions should be clear. They rest on a very sophisticated form
of profile evidence that involves multiple correlations between certain features and an outcome of interest.

36Another source of uncertainty is modeling uncertainty. The model could be mis-specified, in the sense
that it does not capture the structure of true data generating process. When this happens, even in absence
of informational or data uncertainty, the risk model will fail to approximate perfect accuracy. See Figure 3
(orange line).
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though the goal is to determine the risk this individual will do this or that, the risk
can only be statistically estimated by making comparisons and generalizations from
features that are also shared by other individuals. Since any richer set of predictors
will be instantiated by a smaller class of people, the reliability of these generalizations
will also inevitably decline. So the more predictors, the smaller the sample size, the
greater the data uncertainty.37

What are the implications of this trade-off between informational and data uncer-
tainty? There are some aspects of human decision-making that no predictive algorithm
can capture, not because data about them cannot in principle be collected, but rather,
because there would not be enough data to make reliable predictions. Even our best
picture could still fail to capture the world in all its complexity. It is possible, for all
we know, that two people share the exact same attributes, and yet go on to bring
about different outcomes.

To capture this practical and conceptual limitation of predictive algorithms, we
amended the data generating process in the simulation. We have assumed thus far
that the data generating mechanism is deterministic—that a specific set of features
uniquely determines the outcome of interest and that the set of features, in its entirety,
is knowable in principle. This setup assumes that predictive algorithms are capable
of capturing the relationship between predictive features and outcome in the finest
detail possible. But this assumption breaks down because of the trade-off between
informational and data uncertainty. So, we changed the data generating mechanism
by stipulating that the relationship between predictive attributes and outcome is not
deterministic, but governed by the flip of a weighted coin, where the probability of
the outcome is a function of the attributes and the coefficients. Specifically, we revised
the generative model in equation (1) from Section 3 into the following:

S∞ = Probit−1 (β∗0 + β∗1X1 + · · ·+ β∗20X20) , Y ∼ Bernoulli(S∞). (2)

According to the revised model, given two individuals exactly identical as far as what
is knowable about them, the outcome of interest could still be different.38

We do not intend to suggest here that human decision-making is random or inde-
terministic. Rather, the stochastic data generating process makes vivid the realization
that predictive algorithms are not capable—not even in principle—of capturing the
relationship between predictive features and the outcome of interest in the finest detail
possible. This incapability has a serious detrimental effect on algorithmic performance
in terms of both accuracy and fairness. The simulation in its amended version shows
that, once we give up the determinism assumption in how the data are generated,
but maintain the same, correctly specified empirical risk model, every performance
indicator on the side of fairness or accuracy deteriorates (Figure 7 and 8).

So, on the assumption of a stochastic relationship between predictive attributes and
outcome, even predictive algorithms that perfectly approximate the objective risk will

37This trade-off between informational and data uncertainty is also known as the bias-variance trade-off
(Li and Meng, 2021).

38Incidentally, Hedden’s scenario in which each individual is associated with a coin whose bias represents
the objective chance for the individual of bringing about the outcome assumes a stochastic relationship
between predictive attributes and outcome.
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Fig. 7 Predictive square error loss (yellow curve) of the sequence of empirical risk models fitted
with the correct predictors, but with formula (2) as the data generative model. Here, the idealized
risk score is a fractional number between [0, 1] and is no longer deterministically associated with
the individual’s outcome Y . Even the best model (i.e. the model with all 20 true predictors) cannot
achieve perfect accuracy. The green trajectory is the same as that in Figure 3 and represents out of
sample squared error for the deterministic scenario.

Fig. 8 Classification parity (left) and predictive parity (right) for the sequence of empirical risk
models fitted with the correct predictors with formula (2) as the generative model.

inevitably exhibit disparities in performance across groups. Call this baseline perfor-
mance disparity. We can draw a moral from this fact. Instead of insisting on compliance
with fairness performance measures in the absolute, aiming to progressively approxi-
mate the baseline performance disparity might be a more meaningful objective. This
can be done following informational richness. After all, it is still possible to progres-
sively improve performance by adding more predictors, even though perfect parity in
performance is never reached no matter how many true predictors are included.

The second cautionary warning is that information richness should not be simply
equated with the amount of data, or types of data, that are available. If the risk model
itself is not thoughtfully specified or carefully estimated, there is no guarantee that it
would become more accurate with increasing amount of input data, even if the data
are indeed informative. While a loss of accuracy resulting from more data may be
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paradoxical, models that suffer from it may be employed in practice, such as those that
lack self-efficiency.39 Without self-efficiency, adding more data to the risk model may
not improve the performance in terms of accuracy and fairness. Our simulation utilizes
well-studied statistical models and estimation procedures that do no suffer from a lack
of self-efficiency, but such a quality should not be taken for granted. In addition, we
note that with respect to a given class of risk models, all additional predictors may not
be true or relevant predictors. Some may be uncorrelated with the outcome of interest
or even misleading. In our limited simulation analysis, adding misspecified predictors
has zero net effect on predictive accuracy (Figure 3). Neither accuracy improves nor
does it worsen. One may be tempted to conclude that all else being equal, it is better
to add additional predictors to the risk model, since in the worst case scenario they
would simply have a zero net effect for predictive accuracy. But, everything else is not
equal, as the additional costs of gathering larger datasets to sustain the same model
quality, in terms of time, money or heightened intrusion into people’s privacy, are not
negligible. The modeler must balance the trade-off between the costs of relying on
additional predictors and their added value for accuracy and fairness.

These two cautionary warnings are strongly related. Conceptually, there is a limit
to the number of predictors the risk model can rely on because datasets will be
inevitably smaller the more predictors are used. Practically, the size of datasets will be
constrained by costs, in terms of money, time and privacy. These cautionary remarks,
however, should not detract from the key message of our discussion: informational
richness should take more prominence in the literature on algorithmic fairness.

7 Conclusion

The argument in this paper mostly centered on how the informational richness of the
predictors used by risk models affect performance criteria of accuracy and fairness. As
seen in Section 3 and 4, the more true predictors are used, the better the accuracy
and fairness of the algorithm, leaving aside classification parity for the reasons we give
in Section 5. We conclude by sketching how informational richness can help to shed
light on other notions of algorithmic fairness.

Besides performance criteria of fairness, we think that informational richness is also
relevant to attitudinal criteria of algorithmic fairness, for example, the requirement
that the same risk threshold be applied to different individuals belonging to different
groups. Algorithms strictly speaking do not have attitudes, but the humans who design
them and put them to use certainly do. Consider an algorithm who makes predictions
about the risk of loan default. If people in some groups needed a lower risk threshold
to qualify for a loan than people in another group, this would signal a prima facie dif-
ference in attitudes, say, that the costs of erroneous decisions were weighed differently
for people in different groups.40 But this fairness criterion of ‘same threshold’ risks

39Self-efficiency requires the model’s estimate to be more accurate when computed using the complete
dataset. A model is not self-efficient if its estimate achieves a smaller mean squared error when applied to
a subset of data selected from the complete data (Meng, 1994). Xie and Meng (2017) discuss cases in which
the lack of self-efficiency arises in the context of multi-phase statistical inference.

40Same threshold is often taken for granted as a criterion of fairness. For an examination of this criterion
of algorithmic fairness, see Johnson King and Babic (ms). On the other hand, Aziz Huq Huq (2019) argues
that, in some cases, fairness requires that same threshold be violated. Huq points out that people in minority
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being an empty shell if it is not accompanied by another attitudinal criterion, what we
might call equal conscientiousness. As a first pass, think of equal conscientiousness as
the requirement that, across individuals belonging to different groups, the predictive
algorithm relies on an equally rich set of predictive features. If different individuals
were assessed by the algorithm with uneven conscientiousness—that is, using richer or
poorer sets of predictors—this would signal a difference in attitudes toward them, as
though some people were deserving a more careful risk assessment than others. This
difference in attitudes would exist even if—nominally—the same risk threshold were
still applied across groups. So the requirement of applying the same threshold is best
accompanied by the requirement of equal informational richness.

But there is a further complication here. It might be appropriate to rely on a larger
set of predictors for one group versus another insofar as these different sets of predictors
perform equally accurately across the two groups. So equal conscientiousness might
actually require reliance on different set of predictors. Recall that our simulation shows
the following: the more true predictors, the more accurate the risk model. But it also
shows that the speed of this monotonic improvement is not the same across groups. The
same level of accuracy is reached via a smaller set of predictors for one group compared
to another (Figure 3). Given these differences in performance, equal conscientiousness
might require that the predictive algorithm rely on a varying number of predictors
depending on which group the individual who is the target of the prediction belongs
to.

These remarks suggest that attitudinal criteria of fairness—such as equal
threshold—should not be understood independently of performance criteria of accu-
racy and fairness. And—we hold—informational richness and conscientiousness can
help to draw the relevant connections. But a more general examination of the rela-
tionship between performance criteria and attitudinal criteria of algorithmic fairness
is left for another time.
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