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Chrysippus’ Paradox (clarification)

Consider the dog Oscar at time t. Later, at time t ′, Oscar looses
its tail.

Now, consider at t again Oscar but without its tail. That is:
consider the proper part of Oscar at t which is Oscar lacking its
tail. Call this object at t Oscar-minus.

Clearly, we have Oscar!=Oscar-minus. By principle ND, we have
!Oscar!=Oscar-minus.

By interpreting ! as a tense operator, we have that Oscar and
Oscar-minus are different individual at time t ′, but they should be
the same.



Williamson’s Argument Against the KK Principle (1)
Scenario:

Mr. M is looking at a tree from a long distance. The tree
is actually 665 meter tall. But Mr. M does not know it.
Clearly, he knows that the tree is not 0 meter tall.

Premise:

I K(ti+1 → ¬K¬ti )

Argument for I:

- Mr. M only has approximate estimate of how tall the tree is.

- Clearly, he knows that the tree is not 0 meters tall, and that it
is not 2 million meters tall.

- Anyway, Mr. M does not precisely know how tall the tree is.

- So, if the tree is n meters tall, he cannot distinguish if it is
n + 1 or n − 1 meters tall.

- So, if the tree is n meters tall, he does not know if it is not
n + 1 meters tall.

- Further, Mr. M knows the above implication.



Williamson’s Argument Against the KK Principle (2)

Premisses:

I K(ti+1 → ¬K¬ti )

K K(ϕ → ψ) → (Kϕ → Kψ)

T Kϕ → ϕ

KK Kϕ → KKϕ

Claim 1: K¬ti → K¬ti+1

Assume K¬ti .

KK¬ti , by KK.

K(K¬ti → ¬ti+1), by contraposition from I.

KK¬ti → K¬ti+1, by K.

K¬ti+1, by modus ponens.



Williamson’s Argument Against the KK Principle (3)

Scenario:
Someone is looking at a tree from a long distance. The
tree is actually 665 meter heigh. But this person does
not know it. Clearly, he knows that the tree is not 0
meter heigh.

Claim 1: K¬ti → K¬ti+1

Claim 2: K¬t0 → . . .K¬tn, for any n ∈ N.

It follows from Claim 1 by substitution and iteration.

Claim 3: ¬t665 ∧ t665.

t665 by scenario.

Clearly, K¬t0.

K¬t665, by Claim 2.

¬t665, by T.
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Transmissibility



Knowledge is Transmissible

Claim:
Given two agents a and b, the principle KaKbϕ → Kaϕ is valid.

Proof:

Assume
(1) w |= KaKbϕ, and
(2) w |= ¬Kaϕ (absurd hypothesis).

From (2), w |= Pa¬ϕ, and so w ′ |= ¬ϕ, for some w ′ such
that wRk

a w ′.

From (1), w ′ |= Kaϕ for all w ′ such that wRk
a w ′, and so

w ′ |= ϕ.

Contradiction: w ′ |= ϕ and w ′ |= ¬ϕ.



Beliefs are not Transmissible

Claim:
Given two agents a and b, the principle BaBbϕ → Baϕ is not valid.

Explanation: The explanation must rely in the fact that the axiom
Biϕ → ϕ does not hold.
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Problems and Paradoxes
Omniscience Problem
Moore’s Paradox
Fitch’s Paradox
Gettier’s Problem



Knowledge Spreads

Fact:
If & Kiϕ, then & Kiψ, provided & ϕ → ψ.

Proof:

Assume & Kiϕ and & ϕ → ψ.

By the rule of necessitation, we have & Ki (ϕ → ψ).

By distribution of Ki over implication, we have & Kiϕ → Kiψ.

By modus ponens, we have & Kiψ.

This is called the omniscience problem.



Why is This a Problem?

Problem:
Epistemic logic requires that the knowing subject be able to draw
all the (logical) consequences of what he knows.
Thus, the knowing subject is assumed to be idealized.

Solution:
Interpreting Kiϕ as “it follows from what i knows that ϕ”



Skepticism Spreads

Fact:
If & ¬Kiψ, then & ¬Kiϕ, provided & ϕ → ψ.

Proof:

Assume & ¬Kiψ and & ϕ → ψ.

By the rule of necessitation, we have & Ki (ϕ → ψ).

By distribution of Ki over implication, we have & Kiϕ → Kiψ.

By contraposition, we have & ¬Kiψ → ¬Kiϕ.

By modus ponens, we have & ¬Kiϕ.

This is the reverse of the omniscience problem.



Skepticism Spreads – Example

Premise 1: I don’t know I am not brain in a vat.

Premise 2: If I have hands, then I am not a brain a vat.

Conclusion: I don’t know I have hands.



I Know that Everything Is False

I don’t know the Löb formula ((p → q) ↔ p) → p.

K¬(
ϕ → (, for any ϕ

¬( → ¬ϕ, for any ϕ

K(¬( → ¬ϕ)

K¬( → K¬ϕ

K¬ϕ, for any ϕ



Moore’s Paradox

Moore’s sentence:

p but I do not believe that p

p ∧ ¬Bip

Moore’s sentence is not logically inconsistent (why?), yet it is
problematic (why?).



Hintikka’s Explanation

Claim: Bi (p ∧ ¬Bip) is logically inconsistent or unsatisfiable.

Proof:

Suppose for contradiction that w |= Bi (p ∧ ¬Bip).

Then, w |= Bip ∧ Bi¬Bip.

Then, w |= BiBip (why?) and w |= Bi¬Bip.

Then, w ′ |= Bip and w ′ |= ¬Bip for any w ′ ∈ W such that
wRb

i w ′.

Contradiction!

Upshot: Moore’s sentence is doxastically inconsistent, but not
logically inconsistent.



Compare Different Moore’s Sentences

1. I believe this: That p is the case and that I do not believe
that p (inconsistent).

2. a believes this: That p is the case and that a does not believe
that p (inconsistent).

3. a believes this: That p is the case and b does not believe that
p (consistent).

The gist of Hintikka’s explanation is that Bi (p ∧ ¬Bjp) is
inconsistent only if i = j .



Moore’s Explanation (and Block’s)

‘p but I don’t believe that p’ is odd whenever it is asserted.

Asserting a sentence presupposes believing that sentence
(at least asserting it honestly)



The Two Accounts Compared

Hintikka If ‘p but I don’t believe that p’ is believed, then it is
inconsistent

Moore If ‘p but I don’t believe that p’ is asserted, then it is
inconsistent

Hintikka’s explanation is less demanding than Moore’s (why?).

Objection to Moore’s explanation:
The sentence ‘p but I cannot believe that p’ is not odd.

Upshot: There are assertions whose content need not be believed
by the speaker.



Epistemic Variant of Moore’s Sentence

p but I don’t know that p

p ∧ ¬Kip

Under Hintikka’s account:

Ki (p ∧ ¬Kip) is inconsistent (exercise).

Bi (p ∧ ¬Kip) is consistent (exercise).

What about this?

p but you do not know that p.
(epistemically inconsistent when addressed to anyone)



Fitch’s Knowability Paradox (1)

P1: ∀ϕ(ϕ → ♦Kϕ)

P2: ∃ϕ(ϕ ∧ ¬Kϕ)

Thus, p ∧ ¬Kp, by existential instantiation.

Put ϕ := p ∧ ¬Kp

Thus, (p ∧ ¬Kp) → ♦K(p ∧ ¬Kp).

C1 Thus, ♦K(p ∧ ¬Kp).

However

Assume K(p ∧ ¬Kp) for contradiction.

Kp ∧K¬Kp, by distributivity of K.

Kp ∧ ¬Kp, by veridicality of K.

¬K(p ∧ ¬Kp), by reductio rule.

!¬K(p ∧ ¬Kp), by necessitation rule.

C2 ¬♦K(p ∧ ¬Kp).



Fitch’s Knowability Paradox (2)

P1: ∀ϕ(ϕ → ♦Kϕ)

P2: ∃ϕ(ϕ ∧ ¬Kϕ)

C1: Thus, ♦K(p ∧ ¬Kp).

C2: ¬♦K(p ∧ ¬Kp).

C2 contradicts C1, which follows from P1 and P2.

So the negation of P2 is the case, namely ∀ϕ(ϕ → Kϕ).

Or the negation of P1 is the case, namely ∃ϕ(ϕ ∧ ¬♦Kϕ).

Philosophical conclusion

Knowability thesis (P1) and non-omniscience (P2) yield:

the thesis that every truth is known (idealism?);

or the thesis that there is an unknowable truth (mysticism?).



Some Philosophical Claims in Epistemic Logic

ϕ ∧ +¬Kiϕ (realism)
ϕ → !Kiϕ (idealism)
ϕ → +Kiϕ (ens et verum convertuntur)
ϕ → ¬ +Kiϕ (epistemic nihilism, e.g., Gorgias)



Gettier’s Problem

Contra Knowledge as justified true belief.

Example 1 Suppose one is justified in holding ϕ true.

Thus, one is justified in holding ϕ ∨ ψ true.

(assumption: derivation rule preserves justification).

By chance, ϕ is fale, but ψ is true.

So, ϕ ∨ ψ is a justified true belief, but . . .
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Formalizing information using modal logic.



Three Notions of Information

! Being informative (as opposed to trivial).

! Becoming informed.

! Being informed (=holding the information that)



A Modal Logic of Being Informed

! Agent i is informed that (holds the information that) ϕ.
Iiϕ

! ϕ is consistent with what i is informed of.
Uiϕ
(the information that i holds can be consistently updated with
ϕ)



A Modal Logic of Being Informed (1)

Satisfies:

! Distributivity Axiom: Ii (ϕ → ψ) → (Iiϕ → Iiψ).

! Consistency: Iiϕ → Uiϕ (seriality).
Keep in mind the distinction between ‘being informed’ and
‘becoming informed’. One can become informed of
contradictory information, but not being informed of
contradictory information.

! Veridicality: Iiϕ → ϕ (reflexivity).
Keep in mind the distinction between ‘holding the information
that ϕ’ and ‘holding ϕ as information’. The latter need not
satisfy veridicality, but the formes does.

! Brower’s axiom: ϕ → IiUiϕ (symmetry).
No clear argument yet (sorry!).

! Trasmissibility: Ii Ijϕ → Iiϕ (theorem).



A Modal Logic of Being Informed (2)

Satisfies:

! Distributivity Axiom: Ii (ϕ → ψ) → (Iiϕ → Iiψ).

! Consistency: Iiϕ → Uiϕ (seriality).

! Veridicality: Iiϕ → ϕ (reflexivity).

! Trasmissibility: Ii Ijϕ → Iiϕ (theorem).

! Brower’s axiom: ϕ → IiUiϕ (symmetry).

Does not satisfy:

! Iiϕ → Ii Iiϕ (transitivity). Information can be held by artificial
agents. So ‘being informed that’ is not a mental or conscious
state. Hence, introspection-like arguments shall not apply.



Epistemic vs. Information Logic

1. Epistemic logic does not contain the symmetry axiom
ϕ → !♦ϕ. Information logic does.

2. Epistemic logic contains the KK axiom, but information logic
does not.

- Information logic can be seen as a logic for artificial agents
(=agents without mental or conscious states)

- We can understand information as
knowledge without the knowing subject.



Omniscience Problem and Information

Problem: Information logic is not immune from omniscience
problem or information overload.

Replies:

- The informed artificial agent can be a Turing Machine, which
can prove all the propositional tautologies.

- Inputting logical tautologies into an information base does not
change its information content.

- All propositional tautologies are not informative:
‘& ϕ implies & Iϕ’ is a shorthand for
‘& ϕ implies P(ϕ) = 1 implies Inf (ϕ) = 0 implies & Iϕ’



Against Kiϕ → Biϕ

- The causes of the Gettier problem may be due to the
‘justification’ or ‘belief’ part in the definition of knowledge.

Suggestion:
abandoning Kiϕ → Biϕ and endorsing Kiϕ → Iiϕ.

- This would open up an information based approach to
epistemology, rather than a doxastic based approach to
epistemology.

- This would solve the Gettier problem.


