Knowledge and Information

Marcello Di Bello University of Amsterdam

August 15, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transmissibility of knowledge Problems and paradoxes in epistemic logic Formalizing information using modal logic

J. Hintikka (1962), *Knowledge and Belief*, Cornell UP.
L. Floridi. (2006), 'The Logic of Being Informed', L & A, n. 196.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chrysippus' Paradox (clarification)

Consider the dog Oscar at time t. Later, at time t', Oscar looses its tail.

Now, consider at t again Oscar but without its tail. That is: consider the **proper part** of Oscar at t which is Oscar lacking its tail. Call this object at t Oscar-minus.

Clearly, we have Oscar \neq Oscar-minus. By principle **ND**, we have \Box Oscar \neq Oscar-minus.

By interpreting \Box as a tense operator, we have that Oscar and Oscar-minus are different individual at time t', but they should be the same.

Williamson's Argument Against the **KK** Principle (1) Scenario:

Mr. M is looking at a tree from a long distance. The tree is actually 665 meter tall. But Mr. M does not know it. Clearly, he knows that the tree is not 0 meter tall.

Premise:

 $\vdash \mathbf{K}(t_{i+1} \rightarrow \neg \mathbf{K} \neg t_i)$

Argument for I:

- Mr. M only has approximate estimate of how tall the tree is.
- Clearly, he knows that the tree is not 0 meters tall, and that it is not 2 million meters tall.
- Anyway, Mr. M does not precisely know how tall the tree is.
- So, if the tree is *n* meters tall, he cannot distinguish if it is n + 1 or n 1 meters tall.
- So, if the tree is n meters tall, he does not know if it is not n+1 meters tall.
- Further, Mr. M knows the above implication.

Williamson's Argument Against the $\mathbf{K}\mathbf{K}$ Principle (2)

Premisses:

- $\begin{array}{l} \mathsf{I} \ \mathsf{K}(t_{i+1} \to \neg \mathsf{K} \neg t_i) \\ \mathsf{K} \ \mathsf{K}(\varphi \to \psi) \to (\mathsf{K}\varphi \to \mathsf{K}\psi) \\ \mathsf{T} \ \mathsf{K}\varphi \to \varphi \\ \mathsf{K}\mathsf{K} \ \mathsf{K}\varphi \to \mathsf{K}\mathsf{K}\varphi \end{array}$
- Claim 1: $\mathbf{K} \neg t_i \rightarrow \mathbf{K} \neg t_{i+1}$ Assume $\mathbf{K} \neg t_i$. $\mathbf{K} \mathbf{K} \neg t_i$, by $\mathbf{K} \mathbf{K}$. $\mathbf{K} (\mathbf{K} \neg t_i \rightarrow \neg t_{i+1})$, by contraposition from I. $\mathbf{K} \mathbf{K} \neg t_i \rightarrow \mathbf{K} \neg t_{i+1}$, by \mathbf{K} . $\mathbf{K} \neg t_{i+1}$, by modus ponens.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Williamson's Argument Against the **KK** Principle (3)

Scenario:

Someone is looking at a tree from a long distance. The tree is actually 665 meter heigh. But this person does not know it. Clearly, he knows that the tree is not 0 meter heigh.

Claim 1: $\mathbf{K} \neg t_i \rightarrow \mathbf{K} \neg t_{i+1}$

Claim 2: $\mathbf{K} \neg t_0 \rightarrow \ldots \mathbf{K} \neg t_n$, for any $n \in \mathbb{N}$.

It follows from Claim 1 by substitution and iteration.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Claim 3: $\neg t_{665} \land t_{665}$.

t₆₆₅ by scenario.

Clearly, $\mathbf{K} \neg t_0$.

K¬*t*₆₆₅, by **Claim 2**.

 $\neg t_{665}$, by **T**.

Plan

Transmissibility

Knowledge is Transmissible

Claim:

Given two agents *a* and *b*, the principle $\mathbf{K}_{a}\mathbf{K}_{b}\varphi \rightarrow \mathbf{K}_{a}\varphi$ is valid.

Proof:

Assume (1) $w \models \mathbf{K}_{a}\mathbf{K}_{b}\varphi$, and (2) $w \models \neg \mathbf{K}_{a}\varphi$ (absurd hypothesis). From (2), $w \models \mathbf{P}_{a}\neg\varphi$, and so $w' \models \neg\varphi$, for some w' such that $wR_{a}^{k}w'$. From (1), $w' \models \mathbf{K}_{a}\varphi$ for all w' such that $wR_{a}^{k}w'$, and so $w' \models \varphi$. Contradiction: $w' \models \varphi$ and $w' \models \neg\varphi$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Beliefs are not Transmissible

Claim:

Given two agents *a* and *b*, the principle $\mathbf{B}_{a}\mathbf{B}_{b}\varphi \rightarrow \mathbf{B}_{a}\varphi$ is <u>not</u> valid.

Explanation: The explanation must rely in the fact that the axiom $\mathbf{B}_i \varphi \rightarrow \varphi$ does not hold.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plan

Problems and Paradoxes Omniscience Problem Moore's Paradox Fitch's Paradox Gettier's Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Knowledge Spreads

Fact: If $\vdash \mathbf{K}_i \varphi$, then $\vdash \mathbf{K}_i \psi$, provided $\vdash \varphi \rightarrow \psi$.

Proof:

Assume $\vdash \mathbf{K}_i \varphi$ and $\vdash \varphi \rightarrow \psi$. By the rule of necessitation, we have $\vdash \mathbf{K}_i (\varphi \rightarrow \psi)$. By distribution of \mathbf{K}_i over implication, we have $\vdash \mathbf{K}_i \varphi \rightarrow \mathbf{K}_i \psi$. By modus ponens, we have $\vdash \mathbf{K}_i \psi$.

This is called the omniscience problem.

Problem:

Epistemic logic requires that the knowing subject be able to draw **all** the (logical) consequences of what he knows. Thus, the knowing subject is assumed to be **idealized**.

Solution:

Interpreting $\mathbf{K}_i \varphi$ as "it follows from what *i* knows that φ "

Skepticism Spreads

Fact:

If $\vdash \neg \mathbf{K}_i \psi$, then $\vdash \neg \mathbf{K}_i \varphi$, provided $\vdash \varphi \rightarrow \psi$.

Proof:

Assume $\vdash \neg \mathbf{K}_i \psi$ and $\vdash \varphi \rightarrow \psi$. By the rule of necessitation, we have $\vdash \mathbf{K}_i (\varphi \rightarrow \psi)$. By distribution of \mathbf{K}_i over implication, we have $\vdash \mathbf{K}_i \varphi \rightarrow \mathbf{K}_i \psi$. By contraposition, we have $\vdash \neg \mathbf{K}_i \psi \rightarrow \neg \mathbf{K}_i \varphi$. By modus ponens, we have $\vdash \neg \mathbf{K}_i \varphi$.

This is the reverse of the omniscience problem.

Skepticism Spreads – Example

Premise 1: I don't know I am not brain in a vat. Premise 2: If I have hands, then I am not a brain a vat. Conclusion: I don't know I have hands.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I Know that Everything Is False

I don't know the Löb formula $((p \rightarrow q) \leftrightarrow p) \rightarrow p$. $\mathbf{K} \neg \top$ $\varphi \rightarrow \top$, for any φ $\neg \top \rightarrow \neg \varphi$, for any φ $\mathbf{K}(\neg \top \rightarrow \neg \varphi)$ $\mathbf{K} \neg \top \rightarrow \mathbf{K} \neg \varphi$ $\mathbf{K} \neg \varphi$, for any φ

Moore's sentence:

p but I do not believe that p $p \land \neg \mathbf{B}_i p$

Moore's sentence is *not* logically inconsistent (why?), yet it is problematic (why?).

Hintikka's Explanation

Claim: $\mathbf{B}_i(p \land \neg \mathbf{B}_i p)$ is logically inconsistent or unsatisfiable.

Proof:

Suppose for contradiction that $w \models \mathbf{B}_i(p \land \neg \mathbf{B}_i p)$. Then, $w \models \mathbf{B}_i p \land \mathbf{B}_i \neg \mathbf{B}_i p$. Then, $w \models \mathbf{B}_i \mathbf{B}_i p$ (why?) and $w \models \mathbf{B}_i \neg \mathbf{B}_i p$. Then, $w' \models \mathbf{B}_i p$ and $w' \models \neg \mathbf{B}_i p$ for any $w' \in W$ such that $wR_i^b w'$. Contradiction!

Upshot: Moore's sentence is **doxastically inconsistent**, but not logically inconsistent.

Compare Different Moore's Sentences

- 1. I believe this: That *p* is the case and that I do not believe that *p* (inconsistent).
- 2. *a* believes this: That *p* is the case and that *a* does not believe that *p* (inconsistent).
- 3. *a* believes this: That *p* is the case and *b* does not believe that *p* (consistent).

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

The gist of Hintikka's explanation is that $\mathbf{B}_i(p \wedge \neg \mathbf{B}_j p)$ is inconsistent only if i = j.

Moore's Explanation (and Block's)

'p but I don't believe that p' is odd whenever it is asserted.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Asserting a sentence presupposes believing that sentence (at least asserting it honestly)

The Two Accounts Compared

Hintikka If 'p but I don't believe that p' is **believed**, then it is inconsistent

Moore If 'p but I don't believe that p' is **asserted**, then it is inconsistent

Hintikka's explanation is less demanding than Moore's (why?).

Objection to Moore's explanation:

The sentence 'p but I cannot believe that p' is not odd.

Upshot: There are assertions whose content need not be believed by the speaker.

Epistemic Variant of Moore's Sentence

p but I don't know that p

$$p \wedge \neg \mathbf{K}_i p$$

Under Hintikka's account:

 $\mathbf{K}_i(p \land \neg \mathbf{K}_i p)$ is inconsistent (exercise). $\mathbf{B}_i(p \land \neg \mathbf{K}_i p)$ is consistent (exercise).

What about this?

p but **you** do not know that *p*. (epistemically inconsistent when addressed to anyone)

Fitch's Knowability Paradox (1)

P1:
$$\forall \varphi(\varphi \rightarrow \Diamond \mathbf{K}\varphi)$$

P2: $\exists \varphi(\varphi \land \neg \mathbf{K}\varphi)$
Thus, $p \land \neg \mathbf{K}p$, by existential instantiation.
Put $\varphi := p \land \neg \mathbf{K}p$
Thus, $(p \land \neg \mathbf{K}p) \rightarrow \Diamond \mathbf{K}(p \land \neg \mathbf{K}p)$.
C1 Thus, $\Diamond \mathbf{K}(p \land \neg \mathbf{K}p)$.

However

Assume $\mathbf{K}(p \land \neg \mathbf{K}p)$ for contradiction. $\mathbf{K}p \land \mathbf{K}\neg \mathbf{K}p$, by distributivity of \mathbf{K} . $\mathbf{K}p \land \neg \mathbf{K}p$, by veridicality of \mathbf{K} . $\neg \mathbf{K}(p \land \neg \mathbf{K}p)$, by reductio rule. $\Box \neg \mathbf{K}(p \land \neg \mathbf{K}p)$, by necessitation rule. C2 $\neg \Diamond \mathbf{K}(p \land \neg \mathbf{K}p)$. Fitch's Knowability Paradox (2)

P1: $\forall \varphi(\varphi \rightarrow \Diamond \mathbf{K}\varphi)$ P2: $\exists \varphi(\varphi \land \neg \mathbf{K}\varphi)$ C1: Thus, $\Diamond \mathbf{K}(p \land \neg \mathbf{K}p)$.

C2:
$$\neg \Diamond \mathbf{K}(p \land \neg \mathbf{K}p)$$
.

C2 contradicts C1, which follows from P1 and P2. So the negation of P2 is the case, namely $\forall \varphi(\varphi \rightarrow K\varphi)$. Or the negation of P1 is the case, namely $\exists \varphi(\varphi \land \neg \Diamond K\varphi)$.

Philosophical conclusion

Knowability thesis (**P1**) and non-omniscience (**P2**) yield: the thesis that every truth is known (idealism?); **or** the thesis that there is an unknowable truth (mysticism?).

Some Philosophical Claims in Epistemic Logic

$$\begin{array}{l} \varphi \wedge \diamond \neg \mathbf{K}_i \varphi \text{ (realism)} \\ \varphi \to \Box \mathbf{K}_i \varphi \text{ (idealism)} \\ \varphi \to \diamond \mathbf{K}_i \varphi \text{ (ens et verum convertuntur)} \\ \varphi \to \neg \diamond \mathbf{K}_i \varphi \text{ (epistemic nihilism, e.g., Gorgias)} \end{array}$$

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

Contra Knowledge as justified true belief.

Example 1 Suppose one is justified in holding φ true. Thus, one is justified in holding $\varphi \lor \psi$ true. (*assumption:* derivation rule preserves justification). By chance, φ is fale, but ψ is true. So, $\varphi \lor \psi$ is a justified true belief, but ...

Formalizing information using modal logic.

Three Notions of Information

- Being informative (as opposed to trivial).
- Becoming informed.
- Being informed (=holding the information that)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Modal Logic of Being Informed

- Agent *i* is informed that (holds the information that) φ.
 I_iφ
- φ is consistent with what i is informed of.
 U_iφ
 (the information that i holds can be consistently updated with φ)

A Modal Logic of Being Informed (1)

Satisfies:

- ▶ Distributivity Axiom: $\mathbf{I}_i(\varphi \to \psi) \to (\mathbf{I}_i \varphi \to \mathbf{I}_i \psi).$
- Consistency: I_iφ → U_iφ (seriality). Keep in mind the distinction between 'being informed' and 'becoming informed'. One can *become* informed of contradictory information, but not *being* informed of contradictory information.
- Veridicality: I_iφ → φ (reflexivity). Keep in mind the distinction between 'holding the information that φ' and 'holding φ as information'. The latter need not satisfy veridicality, but the formes does.
- ▶ Brower's axiom: $\varphi \rightarrow \mathbf{I}_i \mathbf{U}_i \varphi$ (symmetry). No clear argument yet (sorry!).
- Trasmissibility: $\mathbf{I}_i \mathbf{I}_j \varphi \rightarrow \mathbf{I}_i \varphi$ (theorem).

A Modal Logic of Being Informed (2)

Satisfies:

- ▶ Distributivity Axiom: $I_i(\varphi \to \psi) \to (I_i \varphi \to I_i \psi)$.
- Consistency: $\mathbf{I}_i \varphi \rightarrow \mathbf{U}_i \varphi$ (seriality).
- Veridicality: $\mathbf{I}_i \varphi \rightarrow \varphi$ (reflexivity).
- Trasmissibility: $\mathbf{I}_i \mathbf{I}_j \varphi \rightarrow \mathbf{I}_i \varphi$ (theorem).
- Brower's axiom: $\varphi \rightarrow \mathbf{I}_i \mathbf{U}_i \varphi$ (symmetry).

Does not satisfy:

▶ $\mathbf{I}_i \varphi \rightarrow \mathbf{I}_i \mathbf{I}_i \varphi$ (transitivity). Information can be held by artificial agents. So 'being informed that' is not a mental or conscious state. Hence, introspection-like arguments shall not apply.

Epistemic vs. Information Logic

- 1. Epistemic logic does not contain the symmetry axiom $\varphi \to \Box \Diamond \varphi$. Information logic does.
- Epistemic logic contains the KK axiom, but information logic does not.
 - Information logic can be seen as a logic for artificial agents (=agents without mental or conscious states)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We can understand information as **knowledge without the knowing subject**.

Omniscience Problem and Information

Problem: Information logic is not immune from omniscience problem or information overload.

Replies:

- The *informed* artificial agent can be a Turing Machine, which can prove all the propositional tautologies.
- Inputting logical tautologies into an information base does not change its information content.

- All propositional tautologies are not informative:

' $\vdash \varphi$ implies $\vdash \mathbf{I} \varphi$ ' is a shorthand for

 $'\vdash φ$ implies P(φ) = 1 implies Inf(φ) = 0 implies $\vdash Iφ'$

Against $\mathbf{K}_i \varphi \rightarrow \mathbf{B}_i \varphi$

 The causes of the Gettier problem may be due to the 'justification' or 'belief' part in the definition of knowledge.
 Suggestion:

abandoning $\mathbf{K}_i \varphi \to \mathbf{B}_i \varphi$ and endorsing $\mathbf{K}_i \varphi \to \mathbf{I}_i \varphi$.

- This would open up an *information based approach to epistemology*, rather than a doxastic based approach to epistemology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This would solve the Gettier problem.