
BAYES’ THEOREM - CRITICAL REASONING - PHI 169

MARCELLO DI BELLO

A. CONDITIONAL PROBABILITY

The conditional probability of A given B—in symbols, P (A|B)—expresses the probability
of A on the assumption that B holds. The definition of conditional probability is as follows:

P (A|B) =
P (A ∩B)

P (B)
.

For our proposes, the above definition is equivalent to the following:

P (A|B) =
# elements in A ∩B

# elements in B
.

I leave it to you to figure out why the two definitions are equivalent.

Illustration Suppose you throw fair die that has six faces, numbered ‘One’ - ‘Two’ -
‘Three’ - ‘Four’ - ‘Five’ - ‘Six’. The probability of getting a ‘Six‘ is 1/6, or in symbols
P (Six) = 1/6 because there six possible outcomes and ‘Six’ is one of them. What is
the probability of getting a ‘Six’ conditional on getting an even number, or in symbols,
Pr(Six|Even)? We have:

P (Six|Even) =
P (Six ∩ Even)

P (Even)
=

# elements in Six ∩ Even

# elements in Even
.

We know that P (Even) = 3/6 because there are three even numbers one could get while
tossing a coin. We also know that P (Six ∩ Even) = 1/6 because there is only one number
that is ‘Six’ and even, and there are a total of six numbers. Hence,

P (Six|Even) =
1/6

3/6
= 1/3.

B. BAYES’ THEOREM

Bayes’ theorem is as follows:

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

Bayes’ theorem allows us to calculate the conditional probability of A given B from:
(i) the probability P (A) regardless of B
(ii) the probability of B given A, i.e. P (B|A)
(iii) the probability of P (B), where P (B) = P (B|A)P (A) + P (B|Ac)P (Ac)

One should not confuse P (A|B) and P (B|A). Bayes’ theorem shows how the two are
related. At first blush, this theorem might look complicated and hard to understand. We
shall thus look at an illustrative example and use it to understand how the theorem works.
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C. AN ILLUSTRATION: DIAGNOSTIC TESTS

Suppose that a disease is found in 1/100 people in the US. We select a US individual at
random and then give the individual a diagnostic test, which is 90% reliable. This means
that if an individual has the disease, the probability that the test comes out positive is
90%, and if an individual does not have the disease, the probability that the test comes out
negative is again 90%. Suppose the test comes out positive. What is the probability that
the individual has the disease, given the positive test result? How does this probability
compare with the probability that the individual does not have the disease, given that the
test result was positive?

Let’s first understand what the problem is saying. We are told that an individual, picked at
random from the US population, has a probability of 1/100 of having the disease, that is,

P (D) = 1/100 = 1%,

where D means “the individual picked at random from the US population has the disease”.
This 1% is also called the base rate for the disease in question.

We are also told that the test is 90% reliable, that is, if the individual has the disease,
the test will come out positive in 90% of the cases and if the individual does not have the
disease, the test will come out negative in 90% of the cases. In other words, the test result
is correct 90% of the time, i.e.

P (T [positive]|D) = 90% and P (T [negative]|Dc) = 90%,

where T [positive] means that the test is positive and T [negative] the test is negative. A
consequence of this is that the test result is incorrect 10% of the time, i.e.

P (T [negative]|D) = 10% and P (T [positive]|Dc) = 10%,

because in general P (T [negative]) = 1− P (T [positive]).
So, the problem is asking us to calculate two probabilities and compare them: first,

the probability of having the disease given the that the test comes out positive, i.e.
P (D|T [positive]); second, the probability of not having the disease given that the test
comes out positive, i.e. P (Dc|T [positive]). Which one of the two is higher?

Let’s try to solve the problem intuitively. Suppose an individual tested positive. How
likely is it that the individual has the disease? Many answer that there is a 90% probability
that the individual has the disease because the tests is correct 90% of the time. This answer
is not correct.

I. Method of counting cases To arrive at the correct answer, let’s picture an imaginary
poll of people being tested, say 1,000,000 individuals. Since we are told P (D) = 1%, we
know that regardless of the results of the test only 1% of them have the disease. So we
know that only 10,000 individuals have the disease regardless of what the test says. The
remaining 990,000 do not have the disease. Let’s now suppose all 1,000,000 get tested with
the test having 90% reliability. What are the possible outcomes? The individuals can test
either positive or negative.
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First, consider the individuals who tested positive. There are two sub-cases:

- The first sub-case is that the individuals testing positive do in fact have the
disease. How many such cases will there be? From our poll of 10,000 who have
the disease, 9,000 of them will test positive since the test is 90% reliable.

- The second sub-case is that the individuals testing positive do not in fact have
the disease. How many such cases will there be? From our poll of 990,000 who
don’t have the disease, 99,000 will test positive since the test is 90% reliable (and
thus wrong 10% of the time).

Second, consider the individuals who tested negative. There are two sub-cases:

- The first sub-case is that the individuals testing negative do not have the disease.
How many such cases will there be? From our poll of 990,000 who do not have
the disease, 891,000 of them will test negative since the test is 90% reliable.

- The second sub-case is that the individuals testing negative do in fact have the
disease. How many such cases will there be? From our poll of 10,000 who have
the disease, 1,000 will test positive since the test is 90% reliable (and thus wrong
10% of the time).

More schematically:

Individuals who test positive

- having the disease: 9,000

- without having the disease: 99,000

Individuals who test negative

- without having the disease: 891,000

- having the disease: 1,000

Individuals with disease: 9,000 + 1,000 = 10,000

Individuals without disease: 99,000 + 891,000 = 990,000

Total poll of individuals: 9,000 + 1,000 + 99,000 + 891,000 = 1,000,000

We can now calculate the probability that if an individual tests positive, he has in fact
the disease, that is, P (D|T [positive]) = P (D ∩ T [positive])

P (T [positive])
. Given the numbers above, the

individuals who test positive are 9,000+99,000 and the individuals who test positive
and have the disease are 9,000. So, P (D|T [positive]) = P (D ∩ T [positive])

P (T [positive])
= 9,000

9,000+99,000
=

0.08333333333 ≈ 8.3%.
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We can also visualize the reasoning, as follows:

1 million
individuals

Individuals
without
disease
990,000

We know:

Individuals with
disease 10,000

P (T [positive]|D) = 90% P (T [positive]|Dc) = 10%
Now we test both groups. Let
T [positive] be a positive test.

90%× 10, 000 = 9, 000 10%× 990, 000 = 99, 000

Finally, to find the probability
that a positive test means having
the disease, we look at those who
got a positive test and have the
disease, and divide by all who got
a positive test, disease or not.

9, 000

9, 000 + 99, 000
≈ 8.3%

Surprisingly, the probability of having the disease given that the test is positive is still
quite low. Instead, the probability of not having the disease given that the test is positive,
is very high, roughly 91.7%. Recall that P (Dc|T [positive]) = 1− P (D|T [positive]). If one
tests positive, one is more likely not to have the disease than having it despite the test
being 90% reliable!
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II. Method of calculating probabilities (Bayes’ theorem) We can also arrive at the same
conclusion by calculating probabilities. We draw a similar diagram as before using proba-
bilities:

All individuals

Individuals
without
disease

P (Dc) = 99%

We know:

Individuals with
disease P (D) = 1%

P (T [positive]|D) = 90% P (T [positive]|Dc) = 10%
Now we test both groups. Let
T [positive] be a positive test.

90%× 1% 10%× 99%

Finally, to find the probability
that a positive test means having
the disease, we look at those who
got a positive test and have the
disease, and divide by all who got
a positive test, disease or not.

P (T [positive]|D])P (D)

P (T [positive]|D)P (D) + P (T [positive]|Dc)P (Dc)
=

90%× 1%

(90%× 1%) + (10%× 99%)
≈ 8.3%

Bayes’ theorem reflects the calculations above. This is Bayes’ theorem applied to our case:

P (D|T [positive]) = P (T [positive]|D)P (D)

P (T [positive]|D)P (D) + P (T [positive]|Dc)P (Dc)
.

The problem gave us all the probabilities to plug in, that is:

(i) the probability P (D) regardless of T [positive], that is, P (D) = 1%

(ii) the probability of T [positive] given D, i.e. P (T [positive]|D) = 90%

(iii) P (T [positive]|D)P (D) +P (T [positive]|Dc)P (Dc) = 90%× 1%+ 10%× 99%
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By putting everything together, we get

P (D|T [positive]) = 90%× 1%

(90%× 1%) + (10%× 99%)
≈ 8.3%

D. EXERCISE: TAXI CABS

Imagine that there are two taxi companies, Green Cabs Inc. and Blue Cabs Inc., whose
vehicles are respectively painted green and blue. Green Cabs Inc. covers 85 % of the market
and Blue Cabs Inc. covers the rest. There are no other taxi companies around. On a misty
day a cab hits and injures a passerby, but it drives off. A witness reports that it was a blue
cab. The witness is right only 80 percent of the time. This means that his reliability equals
0.8 in the sense that he gets the color right 80 percent of the time. Given the witness report,
what is the probability that the taxi cab involved in the accident was in fact blue?

Demonstrate your conclusion by the method of counting cases but also by Bayes’ theorem. Make
sure you first correctly identify the probabilities of interest.



Solution to Taxi Cabs Here are some abbreviations:
B means “the taxi that hit the passerby belonged to Blue Cabs Inc.”
G means “the taxi that hit the passerby belonged to Green Cabs Inc.”
Wb means “the witness says the taxi that hit the passerby was blue”
Wg means “the witness says the taxi that hit the passerby was green”

We need to calculate P (B|Wb). We are told that the witness is 80% reliable, that is,
P (Wb|B) = 80% and P (Wg|G) = 80%. So, P (Wb|G) = 20% and P (Wg|B) = 20%. But,
the problem does not give us information about how many taxies belonging to Green Cabs
Inc. and Blue Cabs Inc. there are. We cannot calculate the required probability unless we
have this information. The problem is not solvable.

We are told that Green Cabs Inc. covers 85 % of the market and Blue Cabs Inc. covers the
rest. Given this assumption, P (G) = 85% and P (B) = 15%. We can now solve the problem
by counting cases. Consider 100 taxi cabs, as follows:

100 taxi cabs

Green taxies: 85

We know:

Blue taxies: 15

P (Wb|B) = 80% P (Wb|G) = 20%
Now we suppose a witness sees a blue or green taxi. Let Wb
be “witness says the taxi was blue”

80%× 15 = 12 20%× 85 = 17

Finally, to find the probability that Wb means the the taxi was actu-
ally blue, we look at those cases in which Wb and B, and divide by
cases in which WB , whether B or not. 12

12 + 17
≈ 41%

We can arrive at the same result by Bayes’ theorem, as follows:
P (B|Wb) =

P (Wb|B)P (B)
P (Wb)

= P (Wb|B)P (B)
P (Wb|B)P (B)+P (Wb|G)P (G)

= 80%×15%
80%×15%+20%×85% ≈ 41%.


