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“Probability” is a very useful concept, but can be interpreted in a number of
ways. As an illustration, consider the following.

A patient is admitted to the hospital and a potentially life-saving drug is
administered. The following dialog takes place between the nurse and a
concerned relative.

RELATIVE: Nurse, what is the probability that the drug will work?
NURSE: I hope it works, we’ll know tomorrow.

RELATIVE: Yes, but what is the probability that it will?

NURSE: Each case is different, we have to wait.

RELATIVE: But let’s see, out of a hundred patients that are treated under
similar conditions, how many times would you expect it to work?

NURSE (somewhat annoyed): I told you, every person is different, for some
it works, for some it doesn’t.

RELATIVE (insisting): Then tell me, if you had to bet whether it will work
or not, which side of the bet would you take?

NURSE (cheering up for a moment): I'd bet it will work.

RELATIVE (somewhat relieved): OK, now, would you be willing to lose two
dollars if it doesn’t work, and gain one dollar if it does?

NURSE (exasperated): What a sick thought! You are wasting my time!

In this conversation, the relative attempts to use the concept of probability
to discuss an uncertain situation. The nurse’s initial response indicates that the
meaning of “probability” is not uniformly shared or understood, and the relative
tries to make it more concrete. The first approach is to define probability in
terms of frequency of occurrence, as a percentage of successes in a moderately
large number of similar situations. Such an interpretation is often natural. For
example, when we say that a perfectly manufactured coin lands on heads “with
probability 50%,” we typically mean “roughly half of the time.” But the nurse
may not be entirely wrong in refusing to discuss in such terms. What if this
was an experimental drug that was administered for the very first time in this
hospital or in the nurse’s experience?

While there are many situations involving uncertainty in which the fre-
quency interpretation is appropriate, there are other situations in which it is
not. Consider. for example, a scholar who asserts that the Iliad and the Odyssey
were composed by the same person, with probability 90%. Such an assertion
conveys some information, but not in terms of frequencies, since the subject is
a one-time event. Rather, it is an expression of the scholar’s subjective be-
lief. One might think that subjective beliefs are not interesting, at least from a
mathematical or scientific point of view. On the other hand, people often have
to make choices in the presence of uncertainty, and a systematic way of making
use of their beliefs is a prerequisite for successful, or at least consistent, decision
making.
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In fact, the choices and actions of a rational person can reveal a lot about
the inner-held subjective probabilities, even if the person does not make conscious
use of probabilistic reasoning. Indeed, the last part of the earlier dialog was an
attempt to infer the nurse’s beliefs in an indirect manner. Since the nurse was
willing to accept a one-for-one bet that the drug would work, we may infer
that the probability of success was judged to be at least 50%. Had the nurse
accepted the last proposed bet (two-for-one), this would have indicated a success
probability of at least 2/3.

Rather than dwelling further on philosophical issues about the appropriate-
ness of probabilistic reasoning, we will simply take it as a given that the theory
of probability is useful in a broad variety of contexts, including some where the
assumed probabilities only reflect subjective beliefs. There is a large body of
successful applications in science, engineering, medicine, management, etc., and
on the basis of this empirical evidence, probability theory is an extremely useful
tool.

Our main objective in this book is to develop the art of describing un-
certainty in terms of probabilistic models, as well as the skill of probabilistic
reasoning. The first step, which is the subject of this chapter, is to describe
the generic structure of such models and their basic properties. The models we
consider assign probabilities to collections (sets) of possible outcomes. For this
reason, we must begin with a short review of set theory.

SETS

Probability makes extensive use of set operations, so let us introduce at the
outset the relevant notation and terminology.

A set is a collection of objects, which are the elements of the set. If S is
a set and z is an element of S, we write £ € S. If z is not an element of S, we
write £ ¢ S. A set can have no elements, in which case it is called the empty
set, denoted by Q.

Sets can be specified in a variety of ways. If S contains a finite number of
elements, say 1, z2,...,Tn, we write it as a list of the elements, in braces:

S ={r1,z2,...,2n}.

For example, the set of possible outcomes of a die roll is {1, 2, 3,4,5,6}, and the
set of possible outcomes of a coin toss is {H,T}, where H stands for “heads”
and T stands for “tails.”

If S contains infinitely many elements z1, z2,. .., which can be enumerated
in a list (so that there are as many elements as there are positive integers) we
write

S= {wl,$2v-'-}v

and we say that S is countably infinite. For example, the set of even integers
can be written as {0, 2, —2,4,—4,...}, and is countably infinite.
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Alternatively, we can consider the set of all z that have a certain property
P, and denote it by
{z | = satisfies P}.

(The symbol “|” is to be read as “such that.”) For example, the set of even
integers can be written as {k|k/2 is integer}. Similarly, the set of all scalars z
in the interval [0, 1] can be written as {z|0 < z < 1}. Note that the elements z
of the latter set take a continuous range of values, and cannot be written down
in a list (a proof is sketched in the end-of-chapter problems); such a set is said
to be uncountable.

If every element of a set S is also an element of a set T, we say that S
is a subset of T, and we write S C TorT D S. If SC T and T C S, the
two sets are equal, and we write S = T. It is also expedient to introduce a
universal set, denoted by €2, which contains all objects that could conceivably
be of interest in a particular context. Having specified the context in terms of a
universal set €2, we only consider sets S that are subsets of Q.

Set Operations

The complement of a set S, with respect to the universe , is the set {z €
Q|z ¢ S} of all elements of Q that do not belong to S, and is denoted by Se¢.
Note that Q¢ = Q.

The union of two sets S and T is the set of all elements that belong to S
or T (or both), and is denoted by S UT. The intersection of two sets S and T
is the set of all elements that belong to both S and T, and is denoted by SNT.
Thus,

SUT ={z|z€SorzeT}

and
SNT={z|z€SandzeT}.
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If £ and y are two objects. we use (z.y) to denote the ordered pair of z
and y. The set of scalars (real numbers) is denoted by R: the set of pairs (or
triplets) of scalars, i.e.. the two-dimensional plane (or three-dimensional space,
respectively) is denoted by R? (or R3. respectively).

Sets and the associated operations are easy to visualize in terms of Venn
diagrams. as illustrated in Fig. 1.1.

(d} fel )

Figure 1.1: Examples of Venn diagrams. (a) The shaded region is SNT. (b)
The shaded region is SUT. (¢) The shaded region is SNTC. (d) Here, T C S.
The shaded region is the complement of S. (e) The sets S. T. and U are disjoint.
(f) The sets 5, T". and U form a partition of the set Q.
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1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

e The sample space (2, which is the set of all possible outcomes of an
experiment.

e The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Doaloa ol
rrovabity

§ law
,\‘ P(B)
| Experiment E P(A)
Sample space - .I
{Set of possible outcomes) # B -

Events

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by €. A subset of the sample space, that is, a collection of possible




Sec. 1.2 Probabilistic Models 7

outcomes, is called an event.! There is no restriction on what constitutes an
experiment. For example, it could be a single toss of a coin, or three tosses,
or an infinite sequence of tosses. However, it is important to note that in our
formulation of a probabilistic model. there is only one experiment. So, three
tosses of a coin constitute a single experiment. rather than three experiments.

The sample space of an experiment may consist of a finite or an infinite
number of possible outcomes. Finite sample spaces are conceptually and math-
ematically simpler. Still, sample spaces with an infinite number of elements are
quite common. As an example, consider throwing a dart on a square target and
viewing the point of impact as the outcome.

Choosing an Appropriate Sample Space

Regardless of their number. different elements of the sample space should be
distinct and mutually exclusive, so that when the experiment is carried out
there is a unique outcome. For example, the sample space associated with the
roll of a die cannot contain “1 or 3" as a possible outcome and also “1 or 4”
as another possible outcome. If it did, we would not be able to assign a unique
outcome when the roll is a 1.

A given physical situation may be modeled in several different ways, de-
pending on the kind of questions that we are interested in. Generally, the sample
space chosen for a probabilistic model must be collectively exhaustive, in the
sense that no matter what happens in the experiment, we always obtain an out-
come that has been included in the sample space. In addition, the sample space
should have enough detail to distinguish between all outcomes of interest to the
modeler, while avoiding irrelevant details.

Example 1.1. Consider two alternative games, both involving ten successive coin
tosses:

Game 1: We receive $1 each time a head comes up.

Game 2: We receive $1 for every coin toss. up to and including the first time
a head comes up. Then. we receive $2 for every coin toss. up to the second
time a head comes up. More generally, the dollar amount per toss is doubled
each time a head comes up.

t Any collection of possible outcomes, including the entire sample space 2 and
its complement, the empty set @, may qualify as an event. Strictly speaking, however,
some sets have to be excluded. In particular, when dealing with probabilistic models
involving an uncountably infinite sample space. there are certain unusual subsets for
which one cannot associate meaningful probabilities. This is an intricate technical issue,
involving the mathematics of measure theory. Fortunately, such pathological subsets
do not arise in the problems considered in this text or in practice. and the issue can be
safely ignored.
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In game 1. it is only the total number of heads in the ten-toss sequence that mat-
ters. while in game 2, the order of heads and tails is also important. Thus, in
a probabilistic model for game 1. we can work with a sample space consisting of
eleven possible outcomes, namely, 0.1,...,10. In game 2, a finer grain description
of the experiment is called for, and it is more appropriate to let the sample space
consist of every possible ten-long sequence of heads and tails.

Sequential Models

Many experiments have an inherently sequential character; for example, tossing
a coin three times. observing the value of a stock on five successive days, or
receiving eight successive digits at a communication receiver. It is then often
useful to describe the experiment and the associated sample space by means of
a tree-based sequential description, as in Fig. 1.3.

Samiple space
i 32 I 1 (§ (e

for o pair of

e SUE R}t
O e

Rt

Loaves

1 & & =
9 3

Ist roll

Figure 1.3: Two equivalent descriptions of the sample space of an experiment
involving two rolls of a 4-sided die. The possible outcomes are all the ordered pairs
of the form (i.j). where i is the result of the first roll, and j is the result of the
second. These outcomes can be arranged in a 2-dimensional grid as in the figure
on the left, or they can be described by the tree on the right. which reflects the
sequential character of the experiment. Here, each possible outcome corresponds
to a leaf of the tree and is associated with the unique path from the root to
that leaf. The shaded area on the left is the event {(1,4), (2,4), (3,4), (4,4)}
that the result of the second roll is 4. That same event can be described by the
set of leaves highlighted on the right. Note also that every node of the tree can
be identified with an event, namely. the set of all leaves downstream from that
node. For example, the node labeled by a 1 can be identified with the event
{(1.1),(1,2).(1,3).(1,4)} that the result of the first roll is 1.

Probability Laws

Suppose we have settled on the sample space () associated with an experiment.
To complete the probabilistic model, we must now introduce a probability law.
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Intuitively, this specifies the “likelihood” of any outcome, or of any set of possible
outcomes (an event. as we have called it earlier). More precisely. the probability
law assigns to every event A. a number P(A), called the probability of A.
satisfying the following axioms.

Probability Axioms

1. (Nonnegativity) P(A) > 0, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability
of their union satisfies

P(AU B) = P(A) + P(B).

More generally, if the sample space has an infinite number of elements
and A;, Az, ... is a sequence of disjoint events, then the probability of
their union satisfies

P(AlUAzU--) = P(A) + P(A2) +---.

3. (Normalization) The probability of the entire sample space § is
equal to 1, thatis, P(Q2) = 1.

In order to visualize a probability law. consider a unit of mass which is
“spread” over the sample space. Then, P(A) is simply the total mass that was
assigned collectively to the elements of A. In terms of this analogy, the additivity
axiom becomes quite intuitive: the total mass in a sequence of disjoint events is
the sum of their individual masses.

A more concrete interpretation of probabilities is in terms of relative fre-
quencies: a statement such as P(A) = 2/3 often represents a belief that event A
will occur in about two thirds out of a large number of repetitions of the exper-
iment. Such an interpretation, though not always appropriate, can sometimes
facilitate our intuitive understanding. It will be revisited in Chapter 5, in our
study of limit theorems.

There are many natural properties of a probability law. which have not been
included in the above axioms for the simple reason that they can be derived
from them. For example, note that the normalization and additivity axioms
imply that

1=P(Q)=P(QuUO)=P((Q)+P) =1+P(D).
and this shows that the probability of the empty event is 0:
P(©Y)=0.
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As another example, consider three disjoint events A;, A2, and A3. We can use
the additivity axiom for two disjoint events repeatedly, to obtain
P(A; U AU A3) = P(A U (A2U A3))
=P(A)) + P(A2U A3)
= P(A1) + P(A2) + P(A3).
Proceeding similarly, we obtain that the probability of the union of finitely many

disjoint events is always equal to the sum of the probabilities of these events.
More such properties will be considered shortly.

Discrete Models

Here is an illustration of how to construct a probability law starting from some
common sense assumptions about a model.

Example 1.2. Consider an experiment involving a single coin toss. There are two
possible outcomes, heads (H) and tails (T'). The sample space is Q = {H, T}, and
the events are

{H.T}, {H}, {T}, ©.

If the coin is fair, i.e., if we believe that heads and tails are “equally likely,” we
should assign equal probabilities to the two possible outcomes and specify that
P({H}) = P({T}) = 0.5. The additivity axiom implies that

P({H,T}) =P({H}) +P({T}) = 1,

which is consistent with the normalization axiom. Thus, the probability law is given
by

P({H,T})=1, P({H})=05  P({T})=05  P(©)=0,

and satisfies all three axioms.
Consider another experiment involving three coin tosses. The outcome will
now be a 3-long string of heads or tails. The sample space is

Q= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

We assume that each possible outcome has the same probability of 1/8. Let us
construct a probability law that satisfies the three axioms. Consider, as an example.
the event

A = {exactly 2 heads occur} = {HHT, HTH, THH}.
Using additivity, the probability of A is the sum of the probabilities of its elements:

P({HHT, HTH.THH}) = P({HHT}) + P({HTH}) + P({THH})

_1+1+1
8 8 8
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Similarly, the probability of any event is equal to 1/8 times the number of possible

outcomes contained in the event. This defines a probability law that satisfies the
three axioms.

Discrete Uniform Probability Law

If the sample space consists of n possible outcomes which are equally likely

(i.e., all single-element events have the same probability), then the proba-
bility of any event A is given by

number of elements of A
P(A) = = .

Let us provide a few more examples of sample spaces and probability laws.

Example 1.3. Consider the experiment of rolling a pair of 4-sided dice (cf. Fig.
1.4). We assume the dice are fair, and we interpret this assumption to mean that
each of the sixteen possible outcomes [pairs (i, j), with i. 7 = 1, 2.3, 4] has the same
probability of 1/16. To calculate the probability of an event, we must count the
number of elements of the event and divide by 16 (the total number of possible
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outcomes). Here are some event probabilities calculated in this way:

P ({the sum of the rolls is even}) = 8/16 = 1/2,

P({the sum of the rolls is odd}) =8/16 = 1/2,

P({the first roll is equal to the second}) =4/16 = 1/4,

P ({the first roll is larger than the second}) = 6/16 = 3/8,
P({at least one roll is equal to 4}) = 7/1

Sample space for 4

pair of rolls

4
"’"""w%
:i ‘k”%‘m"\,
2nd roll Event = {at least one rall isa 4}

Probahilitv =7/16

1 9 3

N7 st roll
Y

went = {the first roll is equal to the second}
Probability = 4/16

Figure 1.4: Various events in the experiment of rolling a pair of 4-sided dice,
and their probabilities, calculated according to the discrete uniform law.



14 Sample Space and Probability Chap. 1
Properties of Probability Laws

Probability laws have a number of properties, which can be deduced from the
axioms. Some of them are summarized below.

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.
(a) If A C B, then P(A) < P(B).
(b) P(AUuB)=P(A)+P(B)—P(ANB).
(c) P(AUB) < P(A) + P(B).

(d) P(LAUBUC)=P(A)+P(AcnN B) + P(AcN BcNC).

These properties, and other similar ones, can be visualized and verified
graphically using Venn diagrams, as in Fig. 1.6.

Models and Reality

The framework of probability theory can be used to analyze uncertainty in a
wide variety of physical contexts. Typically, this involves two distinct stages.

(a) In the first stage, we construct a probabilistic model by specifying a prob-
ability law on a suitably defined sample space. There are no hard rules to
guide this step, other than the requirement that the probability law con-
form to the three axioms. Reasonable people may disagree on which model
best represents reality. In many cases, one may even want to use a some-
what “incorrect” model, if it is simpler than the “correct” one or allows for
tractable calculations. This is consistent with common practice in science
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and engineering, where the choice of a model often involves a tradeoff be-
tween accuracy, simplicity, and tractability. Sometimes, a model is chosen
on the basis of historical data or past outcomes of similar experiments.
using statistical inference methods, which will be discussed in Chapters 8
and 9.

ANB AN B

{a} (b

AN pnc

Figure 1.6: Visualization and verification of various properties of probability
laws using Venn diagrams. If A C B, then B is the union of the two disjoint
events A and A€ N B; see diagram (a). Therefore, by the additivity axiom, we

have
P(B)=P(A) + P(A°N B) > P(A),

where the inequality follows from the nonnegativity axiom. and verifies prop-
erty (a).

From diagram (b), we can express the events AU B and B as unions of
disjoint events:

AUB=AU(A°N B), B =(An BYuU (A°N B).
Using the additivity axiom, we have
P(AuB) =P(A) + P(A°n B). P(B)=P(ANB) + P(A°N B).

Subtracting the second equality from the first and rearranging terms. we obtain
P(AUB) = P(A)+ P(B) - P(AN B), verifying property (b). Using also the fact
P(A N B) > 0 (the nonnegativity axiom), we obtain P(A U B) < P(A) + P(B).

verifying property (c).
From diagram (c), we see that the event AU B U C can be expressed as a

union of three disjoint events:
AUBUC =AU (AN B)U(A°NB“NC).

so property (d) follows as a consequence of the additivity axiom.
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(b) In the second stage. we work within a fully specified probabilistic model and
derive the probabilities of certain events, or deduce some interesting prop-
erties. While the first stage entails the often open-ended task of connecting
the real world with mathematics, the second one is tightly regulated by the
rules of ordinary logic and the axioms of probability. Difficulties may arise
in the latter if some required calculations are complex, or if a probability
law is specified in an indirect fashion. Even so, there is no room for ambi-
guity: all conceivable questions have precise answers and it is only a matter
of developing the skill to arrive at them.
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A Brief History of Probability

B.C.E. Games of chance were popular in ancient Greece and Rome, but
no scientific development of the subject took place, possibly because the
number system used by the Greeks did not facilitate algebraic calculations.
The development of probability based on sound scientific analysis had to
await the development of the modern arithmetic system by the Hindus and
the Arabs in the second half of the first millennium, as well as the flood of
scientific ideas generated by the Renaissance.

16th century. Girolamo Cardano, a colorful and controversial Italian
mathematician, publishes the first book describing correct methods for cal-
culating probabilities in games of chance involving dice and cards.

17th century. A correspondence between Fermat and Pascal touches upon
several interesting probability questions and motivates further study in the
field.

18th century. Jacob Bernoulli studies repeated coin tossing and introduces
the first law of large numbers, which lays a foundation for linking theoreti-
cal probability concepts and empirical fact. Several mathematicians, such as
Daniel Bernoulli, Leibnitz, Bayes, and Lagrange, make important contribu-
tions to probability theory and its use in analyzing real-world phenomena.
De Moivre introduces the normal distribution and proves the first form of
the central limit theorem.

19th century. Laplace publishes an influential book that establishes the
importance of probability as a quantitative field and contains many original
contributions, including a more general version of the central limit theo-
rem. Legendre and Gauss apply probability to astronomical predictions,
using the method of least squares, thus pointing the way to a vast range of
applications. Poisson publishes an influential book with many original con-
tributions, including the Poisson distribution. Chebyshev, and his students
Markov and Lyapunov, study limit theorems and raise the standards of
mathematical rigor in the field. Throughout this period, probability theory
is largely viewed as a natural science, its primary goal being the explanation
of physical phenomena. Consistently with this goal, probabilities are mainly
interpreted as limits of relative frequencies in the context of repeatable ex-
periments.

20th century. Relative frequency is abandoned as the conceptual foun-
dation of probability theory in favor of a now universally used axiomatic
system, introduced by Kolmogorov. Similar to other branches of mathe-
matics, the development of probability theory from the axioms relies only
on logical correctness, regardless of its relevance to physical phenomena.
Nonetheless, probability theory is used pervasively in science and engineer-
ing because of its ability to describe and interpret most types of uncertain
phenomena in the real world.




