What We Have Learned So Far about the **SEMANTICS** of Propositional Logic

How to evaluate a formula **relative to ONE Valuation**

How to evaluate a formula **relative to ALL valuations**

Can we get an account of (deductively) valid argument?

Deductively Valid Arguments

<u>Informally speaking</u>, an *argument* is said to be **deductively valid**

if and only if

whenever **the premises** are **true**, the **conclusion** is **always true**. <u>Given the semantics of</u> <u>propositional logic</u>, an *argument* is said to be **deductively valid**

if and only if

whenever **all** valuations that make **true** the **premises** make **true** the **conclusion**.

Recall Modus Ponens

Premise 1: If you take the medication, then you will get better *Premise* 2: You are taking the medication

Conclusion: You will get better

Modus Ponens:	
If <i>p,</i> then <i>q</i> <i>p</i>	
<i>q</i>	

Is Modus Ponens Valid?

Is Modus Ponens Valid?

We only need to check the first line of the table because this is where the premises are all true.

We can write

 $p, p \rightarrow q \vDash q$

Recall Modus Tollens

Premise 1: If you take the medication, then you will get better *Premise* 2: You are NOT getting better

Conclusion: You are NOT taking the medication

Is Modus Tollens Valid?

Is Modus Tollens Valid?

We only need to check the last line of the table because this is where the premises are all true.

We can write

 $\neg q, p \rightarrow q \vDash \neg p$