
2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-13

A crucial notion: pure syntax Formulas and trees are pure symbolic forms, living
at the level of syntax, as yet without concrete meaning. Historically, identifying this
separate level of form has been a major abstraction step, that only became fully clear in
19th century mathematics. Most uses of natural language sentences and actual reasoning
come with meanings attached, unless very late at parties. Pure syntax has become the
basis for many connections between logic, mathematics, and computer science, where
purely symbolic processes play an important role.

Logic, language, computation, and thought The above pictures may remind you of
parse trees in grammars for natural languages. Indeed, translations between logical forms
and linguistic forms are a key topic at the interface of logic and linguistics, which has also
started working extensively with mathematical forms in the 20th century. Connections be-
tween logical languages and natural language have become important in Computational
Linguistics and Artificial Intelligence, for instance when interfacing humans with com-
puters and symbolic computer languages. In fact, you can view our syntax trees in two
ways, corresponding to two major tasks in these areas. ‘Top down’ they analyze complex
expressions into progressively simpler ones: a process of parsing given sentences. But
‘bottom up’ they construct new sentences, a task called language generation.

But also philosophically, the relation between natural and artificial languages has been
long under debate. The more abstract level of logical form has been considered more
‘universal’ as a sort of ‘language of thought’, that transcends differences between natural
languages (and perhaps even between cultures). You can also cast the relation as a case
of replacement of messy ambiguous natural language forms by clean logical forms for
reasoning and perhaps other purposes — which is what the founding fathers of modern
logic had in mind, who claimed that natural languages are ‘systematically misleading’.
But less radically, and perhaps more realistic from an empirical cognitive viewpoint, you
can also see the relation as a way of creating hybrids of existing and newly designed
forms of expression. Compare the way the language of mathematicians consists of natural
language plus a growing fund of notations, or the way in which computer science extends
our natural repertoire of expression and communication.

2.5 Semantic Situations, Truth Tables, Binary Arithmetic

Differences in formal syntax often correspond to differences in meaning: the above two
trees are an example. To explain this in more detail, we now need a semantics that, for
a start, relates syntactic objects like formulas to truth and falsity in semantic situations.
Thus, formulas acquire meaning in specific settings, and differences in meaning between
formulas are often signalled by differences in truth in some situation.

This is from Chapter 2 of textbook “Logic in Action” (www.logicinaction.org)

2-14 CHAPTER 2. PROPOSITIONAL LOGIC

Truth values and valuations for atoms As we said already, each set of proposition
letters p, q, r, . . . generates a set of different situations, different ways the actual world
might be, or different states that it could be in (all these interpretations make sense in
applications). Three proposition letters generate 2

3
= 8 situations:

{pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr} (2.17)

Here proposition letters stand for ‘atomic propositions’, while logical operations form
‘molecules’. Of course this is just a manner of speaking, since what counts as ‘atomic’
in a given application is usually just our decision ‘not to look any further inside’ the
proposition. A convenient mathematical view of situations is as functions from atomic
propositions to truth values 1 (‘true’) and 0 (‘false’). For instance, the above situation
pqr corresponds to the function sending p to 1, q to 0, and r to 1. An alternative notation
for truth values is t and f , but we use numbers for their suggestive analogy with binary
arithmetic (the heart of computers). We call these functions V valuations; V (') = 1 says
that the formula ' is true in the situation (represented by) V , and V (') = 0 says that
the formula ' is false in the situation V . For V (') = 1 we also write V |= ' and for
V (') = 0 we also write V 6|= '. One can read V |= ' as “V makes true '”, or as “V
satisfies '” or “V is a model of '”. The notation using |= will reappear in later chapters.

Boolean operations on truth values Any complex sentence constructed from the rel-
evant atomic proposition letters is either true or false in each situation. To see how this
works, we first need an account for the meaning of the logical operations. This is achieved
by assigning them Boolean operations on the numbers 0, 1, in a way that respects (as far
as reasonable) their intuitive usage. For instance, if V (') = 0, then V (¬') = 1, and
vice versa; and if V (') = 1, then V (¬') = 0, and vice versa. Such relations are easier
formatted in a table.

Definition 2.10 (Semantics of propositional logic) A valuation V is a function from propo-
sition letters to truth values 0 and 1. The value or meaning of complex sentences is com-
puted from the value of basic propositions according to the following truth tables.

' ¬'

0 1

1 0

' ' ^ ' _ '! '$

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

(2.18)

Bold-face numbers give the truth values for all relevant combinations of argument values:
four in the case of connectives with two arguments, two in the case of the connective with
one argument, the negation.

2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-15

Explanation The tables for negation, conjunction, disjunction, and equivalence are
quite intuitive, but the same does not hold for the table for implication. The table for
implication has generated perennial debate, since it does not match the word ‘implies’ in
natural language very well. E.g., does having a false antecedent (condition) ' and a true
consequent really make the implication if-'-then- true? But we are just doing the best
we can in our simple two-valued setting. Here is a thought that has helped many students.
You will certainly accept the following assertion as true: ‘All numbers greater than 13 are
greater than 12’. Put differently, ‘if a number n is greater than 13 (p), then n is greater
than 12 (q)’. But now, just fill in different numbers n, and you get all combinations in the
truth table. For instance, n = 14 motivates the truth-value 1 for p ! q at pq, n = 13

motivates 1 for p ! q at pq, and n = 12 motivates 1 for p ! q at pq.

A mismatch with natural language can actually be very useful. Conditionals are a ‘hot
spot’ in logic, and it is a challenge to create systems that get closer to their behaviour.
Propositional logic is the simplest treatment that exists, but other logical systems today
deal with further aspects of conditionals in natural language and ordinary reasoning. You
will see a few examples later in this course.

Computing truth tables for complex formulas How exactly can we compute truth
values for complex formulas? This is done using our tables by following the construction
stages of syntax trees. Here is how this works. Take the valuation V with V (p) = V (q) =

1, V (r) = 0 and consider two earlier formulas:

((¬p _ q) ! r 0

(¬p _ q) 1

¬p 0

p 1

q 1

r 0

(¬(p _ q) ! r) 1

¬(p _ q) 0

(p _ q) 1

p 1 q 1

r 0

Incidentally, this difference in truth value explains our earlier point that these two variant
formulas are different readings of the earlier natural language sentence.

Computing in this manner for all valuations, we can systematically tabulate the truth value

2-16 CHAPTER 2. PROPOSITIONAL LOGIC

behaviour of complex propositional formulas in all relevant situations:

p q r ((¬p _ q) ! r) (¬(p _ q) ! r)

0 0 0 0 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 0 1

1 1 1 1 1

(2.19)

Paying attention to the proper placement of brackets in formulas, you can compute truth-
tables step by step for all situations. As an example we take the second formula from (2.19).
First, start with summing up the situations and copy the truth-values under the proposition
letters as has been done in the following table.

p q r (¬ (p _ q) ! r)

0 0 0 · 0 · 0 · 0

0 0 1 · 0 · 0 · 1

0 1 0 · 0 · 1 · 0

0 1 1 · 0 · 1 · 1

1 0 0 · 1 · 0 · 0

1 0 1 · 1 · 1 · 1

1 1 0 · 1 · 0 · 0

1 1 1 · 1 · 1 · 1

(2.20)

Then start filling in the truth-values for the first possible operator. Here it is the disjunc-
tion: it can be computed because the values of its arguments are given (you can also see
this from the construction tree). (p _ q) gets value 0 if and only if both p and q have the
value 0. The intermediate result is given in the first table in (2.21). The next steps are the

2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-17

negation and then the conjunction. This gives the following results:

(¬ (p _ q) ! r)

· 0 0 0 · 0

· 0 0 0 · 1

· 0 1 1 · 0

· 0 1 1 · 1

· 1 1 0 · 0

· 1 1 0 · 1

· 1 1 1 · 0

· 1 1 1 · 1

(¬ (p _ q) ! r)

1 0 0 0 · 0

1 0 0 0 · 1

0 0 1 1 · 0

0 0 1 1 · 1

0 1 1 0 · 0

0 1 1 0 · 1

0 1 1 1 · 0

0 1 1 1 · 1

(¬ (p _ q) ! r)

1 0 0 0 0 0

1 0 0 0 1 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 1 0

0 1 1 1 1 1

(2.21)

One does not have to draw three separate tables. All the work can be done in a single
table. We just meant to indicate the right order of filling in truth-values.

Exercise 2.11 Construct truth tables for the following formulas:

• (p ! q) _ (q ! p),

• ((p _ ¬q) ^ r) $ (¬(p ^ r) _ q).

Exercise 2.12 Using truth tables, investigate all formulas that can be readings of

¬p ! q _ r

(by inserting brackets in appropriate places), and show that they are not equivalent.

If, Only If, If and Only If Here is a useful list of different ways to express implications:

If p then q p ! q

p if q q ! p

p only if q p ! q

The third item on this list may come as a surprise. To see that the third item is correct,
reflect on how one can check whether “We will help you only if you help us” is false.
This can can happen only if “We help you” is true, but “You help us” is false.

These uses of ‘if’ and ‘only if’ explain the use of the common abbreviation ‘if and only
if’ for an equivalence. “We will help you if and only if you help us” states that “you help
us” implies “we help you”, and vice versa. A common abbreviation for ’if and only if’
that we will use occasionally is iff.

