TruthValidityLogical ConsequenceEquivalence $V \vDash \psi$ $\vDash \psi$ $\phi_1, \phi_2, \dots, \phi_k \vDash \psi$ $\phi \equiv \psi$

PHIL 50 - Introduction to Logic

Marcello Di Bello, Stanford University, Spring 2014

Week 2 — Friday Class

Overview of Key Notions

- * <u>Truth</u> $V \vDash \psi$ *iff* valuation V makes ψ true
- * <u>Validity</u> $\models \psi$ *iff* all valuations V's make ψ true
- Logical Consequence

 $\phi_1, \phi_2, ..., \phi_k \models \psi$ *iff* all valuations *V*'s that make $\phi_1, \phi_2, ..., \phi_k$ true make ψ true

iff for all valuations V's [if V makes $\phi_1, \phi_2, ..., \phi_k$ true, V makes ψ true]

• Logical equivalence $\phi \equiv \psi$ iff $\phi \models \psi$ and $\psi \models \phi$

What We Have Learned So Far about the **SEMANTICS** of Propositional Logic

How to evaluate a formula **relative to ONE Valuation**

 $V \vDash \psi$

How can we evaluate a formula relative to ALL valuations?

How to Think About a Valuation

For any (atomic) formula in the language a valuation *V* tells us whether the formula is true (value **1**) or false (value **0**).

You can think of V as selecting one possible complete description of the world as a whole (in so far as the world is describable through language)

So, each V represent one possible selection of a complete description of the world.

How MANY Valuations Functions?

With one atomic proposition, there are **two** possible valuations.

With **two** atomic propositions, there are **four** possible valuations.

With **three** atomic propositions, there are **2^3=8** possible valuations.

With **n** atomic propositions, there are **2^n** possible valuations.

<i>(p</i>	\wedge	(<i>p</i>	\rightarrow	q))	\rightarrow	\boldsymbol{q}
1		1		1		1
1		1		0		0
0		0		1		1
0		0		0		0

(<i>p</i>	\wedge	(<i>p</i>	\rightarrow	q))	\rightarrow	$oldsymbol{q}$
1		1	1	1		1
1		1	0	0		0
0		0	1	1		1
0		0	1	0		0

<i>(p</i>	\wedge	(<i>p</i>	\rightarrow	q))	\rightarrow	$oldsymbol{q}$
1	1	1	1	1		1
1	0	1	0	0		0
0	0	0	1	1		1
0	0	0	1	0		0

<i>(p</i>	\wedge	(<i>p</i>	\rightarrow	q))	\rightarrow	\boldsymbol{q}
1	1	1	1	1	1	1
1	0	1	0	0	1	0
0	0	0	1	1	1	1
0	0	0	1	0	1	0

If a formula is true regardless of the selection of the valuation function, the formula is true no matter what the world is like.

	(<i>p</i>	\wedge	(<i>p</i>	\rightarrow	q))	\rightarrow	$oldsymbol{q}$	
	1	1	1	1	1	1	1	Always true
		0		0		1	0	
	0	0	0	1	1	1	1	
)	0	0	0	1	0	1	0	
								-
			_	_	p			
			1	0	1			Sometimes true
			0	1	0			Jonneumestrue

Classification of Formulas

• Those that are never true (contradiction):

 $p \wedge (\neg p), \ldots$

• Those that can be true (**satisfiable**):

 $(\neg p) \lor q, \dots$

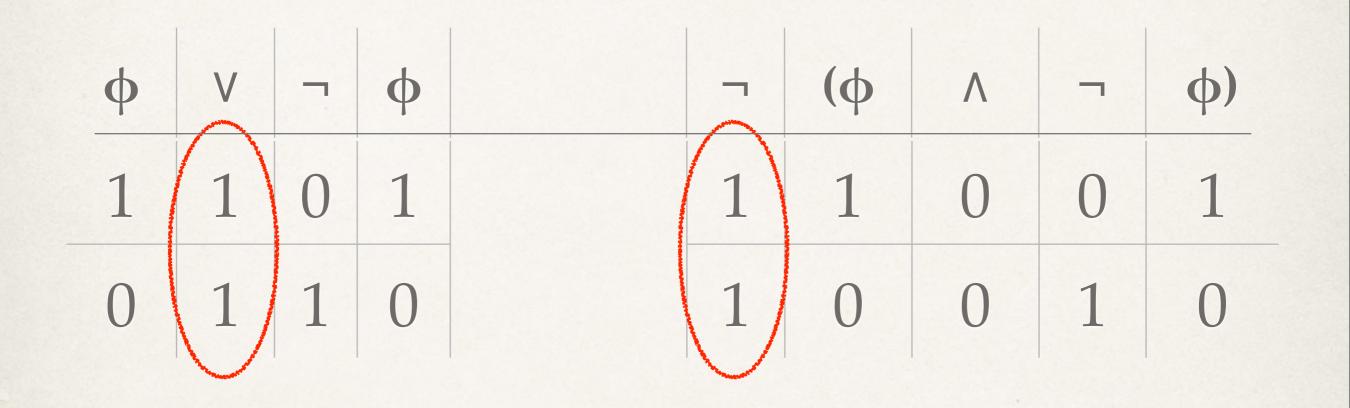
• Those that are always true (valid, tautology):

 $(p \land (p
ightarrow q))
ightarrow q, \ldots$

If the formula φ is valid, we write $\models \varphi$

The expression $V \vDash \phi$ means that ϕ is true relative to ONE valuation. Instead, the expression $\vDash \phi$ means that ϕ is true relative to ALL valuations.

Validity of PEM and PNC



If we assume that formulas can take value 0 or 1 (i.e. **principle of bivalence**), then PEM and PNC are both **valid**.

We can write:

$$\models \phi \lor \neg \phi$$
and

$$\models \neg(\phi \land \neg \phi)$$

What Happens to PEM and PNC if we Drop Bivalence?

For you to discover in the homework

Establishing the Equivalence $(\phi \rightarrow \psi) \equiv \neg \phi \lor \psi$

Establishing the Equivalence $(\phi \land \psi) \equiv \neg(\neg \phi \lor \neg \psi)$

(φ	٨	ψ)	-	(¬		V	7	ψ)
1	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	0	1		0	1
1		0	0	0	1	1	1	0
0		1	0	1	0	1	0	1
0	0	0	0	1	0 0	1	1	0

So...Connectives Can Be Inter-defined!

Useful equivalences

$$(\phi \rightarrow \psi) \equiv \neg \phi \lor \psi$$

$$(\phi \land \psi) \equiv \neg (\neg \phi \lor \neg \psi)$$

$$(\phi \leftrightarrow \psi) \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$

These equivalences show that we only need V and \neg to express all other connectives such as Λ , \rightarrow and \leftrightarrow

What We Have Learned So Far about the **SEMANTICS** of Propositional Logic

How to evaluate a formula **relative to ONE Valuation**

How to evaluate a formula **relative to ALL valuations**

Can we get an account of (deductively) valid argument?

Deductively Valid Arguments

<u>Informally speaking</u>, an *argument* is said to be **deductively valid**

if and only if

whenever the premises are true, the conclusion is always true. <u>Given the semantics of</u> <u>propositional logic</u>, an *argument* is said to be **deductively valid**

if and only if

whenever **all** valuations that make **true** the **premises** make **true** the **conclusion**.

This definition is **systemrelative**; it applies within the system of propositional logic.

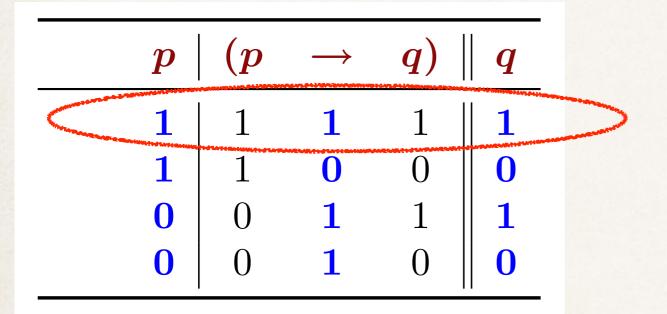
Recall Modus Ponens

Premise 1: If you take the medication, then you will get better *Premise* 2: You are taking the medication

Conclusion: You will get better

Modus Ponens:	Modus Ponens:
If <i>p,</i> then <i>q</i> <i>p</i>	$\begin{array}{l} p \rightarrow q \\ q \end{array}$
<i>q</i>	\overline{q}

Is Modus Ponens Valid?



We only need to check the first line of the table because this is where the premises are all true.

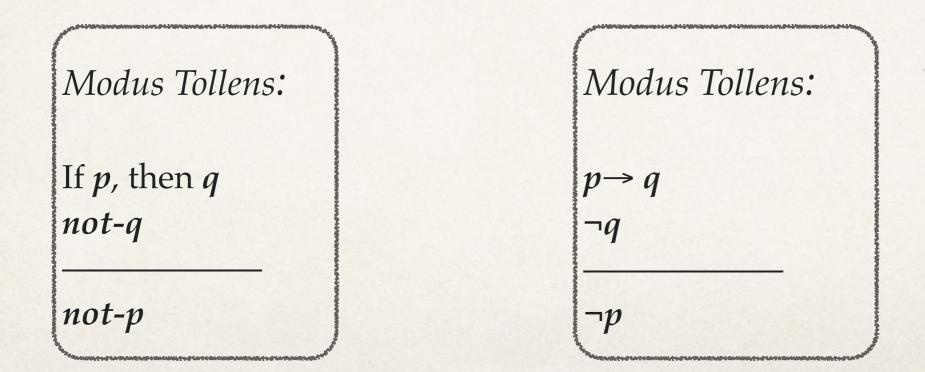
We can write

 $p, p \rightarrow q \vDash q$

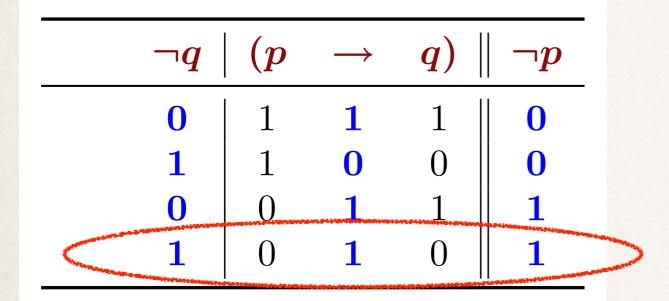
Recall Modus Tollens

Premise 1: If you take the medication, then you will get better *Premise* 2: You are NOT getting better

Conclusion: You are NOT taking the medication



Is Modus Tollens Valid?



We only need to check the last line of the table because this is where the premises are all true.

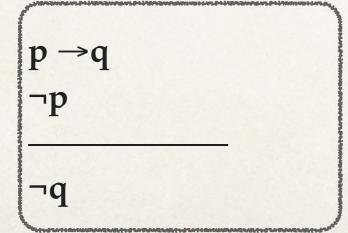
We can write

 $\neg q, p \rightarrow q \vDash \neg p$

Is "Denying the Consequent" a Valid Argument Pattern?

Premise 1: If the money supply increases by less than 5%, inflation will decrease *Premise* 2: The money supply does NOT increase by less than 5%

Conclusion: Inflation will NOT decrease



If you construct the appropriate truth table, you see that this argument patters is NOT valid.

Truth Table Method to Check "Denying the Consequent"

¬p	(p	\rightarrow	q)	٦q	
0	1	1	1	0	
0	1	0	0	1	
 1	0	1	1	0	
1	0	1	0	1	

Not all valuations that make true the premises $p \rightarrow q$ and $\neg p$ make true the conclusion $\neg q$. So "Denying the Consequent" is not valid in propositional logic.

Validity is Relative to the Logical System

We could formally establish - **within the system of propositional logic -** that *Modus Ponens* and *Modus Tollens* are valid argument patterns, while *Denying the Consequent* is not.

But how significant is this result? Should we be convinced by it?

We should always bear in mind that **formal proofs of validity are relative to a logical system**. But is our logical system adequate for what we want it to do, e.g. accounting for good reasoning?

A Clarification on Truth-Functional Connectives

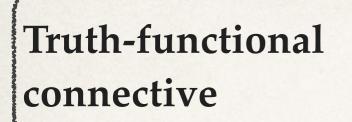
Truth-Functional Connectives

A one-place connective C is used truth-functionally whenever the truth value of the formula $C\phi$ is a function of (is completely determined by) the truth value of the constituent formula ϕ . An example of a one-place truth functional connective is ¬.

A two-place connective C is used truth-functionally whenever the truth value of the formula ($\phi C \psi$) is a function of (is completely determined by) the truth values of the constituent formulas ϕ and ψ . An example of a two-place truth functional connective is Λ .

And similarly for any **n-ary** connective...

AND-THEN Is Not a Truth-Functional Connective



Truth-functional
connective

Not a truth-functional connective

arphi	\wedge	$oldsymbol{\psi}$
1	1	1
1	0	0
0	0	1
0	0	0

arphi	\rightarrow	ψ
1	1	1
1	0	0
0	1	1
0	1	0

	φ	AND-THEN	ψ
<	1	????	1
	1	0	0
	0	0	1
	0	0	0

In one case, assigning truth values to ϕ and ψ does not determine the truth value of " ϕ **AND-THEN** ψ ". The temporal order of ϕ and ψ matters, not merely their truth values.

Other Examples of Non-Truth Functional Connectives

		φ	BECAUSE	ψ
"I avoid the lecture"	<	1	????	1
BECAUSE		1	0	0
"the instructor is confusing"		0	0	1
		0	0	0

"Wittgenstein wrote his thesis" WHILE "he was fighting in the Great War"

	φ	WHILE	ψ
<	1	????	1
	1	0	0
	0	0	1
	0	0	0