
PHIL 50 - Introduction to Logic
Marcello Di Bello, Stanford University, Spring 2014

George Boole Recursive Pizza

Week 2 — Monday Class

2+3

Today we Begin with the Simplest
Logical System: Propositional Logic

Syntax: rules to build
well-formed formulas!

Semantics: rules to
assign (truth) values
to these formulas

SYNTAX of the Propositional Language

 Ingredients of the Propositional LanguageThe Language of Propositional Logic

Ingredients of the propositional language

1 Basic (atomic) statements (propositions):

p, q, r, . . .

2 Operators to build more statements:

“not . . . ” becomes ¬ . . .

“. . . and . . .” becomes . . . ^ . . .

“. . . or . . .” becomes . . . _ . . .

“if . . . then” becomes . . . ! . . .

“ . . . if and only if . . .” becomes . . . $. . .

(http://www.logicinaction.org/) 17 / 41

 Well-Formed Formulas The Language of Propositional Logic

The propositional language

The language L
P

is a set of formulas satisfying:
1 All the basic propositions are in L

P

:

p 2 L
P

, q 2 L
P

, r 2 L
P

, . . .

2 If ' 2 L
P

and 2 L
P

, then
¬' 2 L

P

, (' ^) 2 L
P

, (' !) 2 L
P

,
(' _) 2 L

P

, (' $) 2 L
P

.

3 Nothing else is in L
P

.

In practice, we will avoid parenthesis if they are not necessary.

(http://www.logicinaction.org/) 18 / 41

 Formulas as Trees The Language of Propositional Logic

Constructing formulas

The construction of a formula can be seen as building a tree.

((¬p _ q) ! r)((¬p _ q) ! r)

!

((¬p _ q) ! r)

!

(¬p _ q) r

((¬p _ q) ! r)

!

(¬p _ q)

_

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p q

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p

¬

q

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p

¬

p

q

r

(¬(p _ q) ! r)(¬(p _ q) ! r)

!

(¬(p _ q) ! r)

!

¬(p _ q) r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

(p _ q)

r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

(p _ q)

_

r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

(p _ q)

_

p q

r

(http://www.logicinaction.org/) 19 / 41

The Language of Propositional Logic

Constructing formulas

The construction of a formula can be seen as building a tree.

((¬p _ q) ! r)((¬p _ q) ! r)

!

((¬p _ q) ! r)

!

(¬p _ q) r

((¬p _ q) ! r)

!

(¬p _ q)

_

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p q

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p

¬

q

r

((¬p _ q) ! r)

!

(¬p _ q)

_

¬p

¬

p

q

r

(¬(p _ q) ! r)(¬(p _ q) ! r)

!

(¬(p _ q) ! r)

!

¬(p _ q) r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

(p _ q)

r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

(p _ q)

_

r

(¬(p _ q) ! r)

!

¬(p _ q)

¬

(p _ q)

_

p q

r

(http://www.logicinaction.org/) 19 / 41

 Formulas as Trees

The
formulas that
are circled in
red are basic
(or atomic)
formulas The formulas

within a grey
rectangle are

more complex!
(or molecular)

formulas

Formulas Are Defined Inductively
or Recursively

What does
that mean?

Inductive (or Recursive) Definitions (1)

Inductive definition of the set of natural numbers
!
Base case: !
! 1 is a natural number!
!
Inductive case: !
! If n is a natural number, n+1 is a natural number!
!
Final clause:!
! Nothing else is a natural number!

Inductive (or Recursive) Definitions (2)

Inductive definition of the set of formulas of Lp
!
Base case: !
! p, q, r … are formulas of Lp.!
!
Inductive case(s): !
! If φ formula of Lp, then ¬φ is a formula of Lp!
! If φ and ψ are formulas of Lp, then φ ∧ ψ is a formula of Lp!
! …. and so on for the other connectives!
!
Final clause:!
! Nothing else is a formula of Lp!

φ and ψ are not
formulas; they are

schemata for formulas.
This “trick” makes the

definition possible.

Inductive (or Recursive) Definitions (3)

Inductive (or recursive) definitions are somewhat circular in
the sense that they define something in terms of itself.!
!
Look at the inductive case(s):!
! A natural number is defined in terms of a natural number. !
! A formula is defined in terms of a formula.!
!
But there are no vicious circles because of the base case.

Recursion

in the

Grammar

of Natural

Language

Sentences

A sentence can
be embedded
within a sentence
and so on …

The Recursive Pizza

01

…and The
Recursive Mind

SEMANTICS of the Propositional
Language

 Evaluating FormulasSemantic Situations: Truth Tables

Evaluating formulas

How do we know if a given formula ' is true or false?

We need the truth-values of the basic propositions p, q, r, . . .

that appear in '.
We need to know the meaning of ¬, ^, _, ! and $.

(http://www.logicinaction.org/) 20 / 41

Semantic Situations: Truth Tables

Valuations

Valuation. Let P = {p, q, r, . . .} be a set of atomic propositions.
A valuation V from P to {0, 1} assigns to each element of P a unique
truth-value.

Example: assume P = {p, q}.
There are four di↵erent valuations (four di↵erent situations):

V1(p) = 1 V1(q) = 1

V2(p) = 1 V2(q) = 0

V3(p) = 0 V3(q) = 1

V4(p) = 0 V4(q) = 0

How many for P = {p}? How many for P = {p, q, r}?

(http://www.logicinaction.org/) 24 / 41

 Valuation Functions This encodes the
principe of bivalence. For

every atomic propositions is
assigned value 1 or 0.

How MANY Valuations Functions?

With one
atomic
proposition,
there are two
possible
valuations.

With two
atomic
propositions,
there are four
possible
valuations.

With three
atomic
propositions,
there are 2^3=8
possible
valuations.

With n atomic
propositions,
there are 2^n
possible
valuations.

So Far We Have Only Assigned
Truth Values to Atomic Formulas

How can we assign
truth values to more
complex formulas?

 Extending V for NegationSemantic Situations: Truth Tables

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.

For negation ¬

' ¬'

1 0

0 1

or, in a shorter format:

¬ '

0 1
1 0

(http://www.logicinaction.org/) 21 / 41

Negation behaves
like the 1-place

function !
 1-x=y.

Semantic Situations: Truth Tables

Behaviour of the connectives (2)

For conjunction ^

' ^

1 1 1
1 0 0
0 0 1
0 0 0

For disjunction _

' _

1 1 1
1 1 0
0 1 1
0 0 0

(http://www.logicinaction.org/) 22 / 41

 Extending V for
 Conjunction and Disjunction

Disjunction
behaves like the 2-place

functions !
(x_1+x_2)-(x_1·x_2)=y!

and!
max(x_1, x_2)=y.

Conjunction
behaves like the 2-place

functions!
(x_1·x_2)=y !

and !
min(x_1, x_2)=y.

01

George Boole’s Algebra

of Logic (mid 19th century)

✤ Statements have value 0 or 1!

✤ “and” is understood as
multiplication!

✤ “not” is understood as
subtraction!

✤ “or” is understood as Boolean
addition (define Boolean
addition as 1+1=1; 1+0=1;
0+1=1; and 0=0+0)

Semantic Situations: Truth Tables

Evaluating formulas in one situation

(¬ p) ^ q
V : 1 0 1 1 V |= (¬p) ^ q

(p ^ (p ! q)) ! q

V : 1 0 1 0 0 1 0 V |= (p ^ (p ! q)) ! q

¬ ¬ p

V : 0 1 0 V 6|= ¬¬p

(p ! q) _ (q ! p)

V : 0 1 1 1 1 0 0 V |= (p ! q) _ (q ! p)

(http://www.logicinaction.org/) 25 / 41

Evaluating One Formula
 Relative to One Valuation

The order
matters:!

!
First, assign a truth value to p and

q; then to (¬p); and finally to (¬p) ∧ q.!
!

Go from the simplest to the
more complex.!

The expression !
!

V ⊨ (¬p) ∧ q!
 !

should be understood as saying that
V makes true the formula (¬p) ∧ q !

!
Importantly, V ⊨ (¬p) ∧ q is

not a formula.

A

B
 Y

A

B
 Y

A Y NOT gate

OR gate

AND gate

Logic Gates

Logic Circuits and Formulas

A

 Y
B

 Y

A

B

(¬A) ∧ B

(A ∨ B) ∧ (¬B)

A

B
 Y

AND

A

B
 Y

OR

A Y

NOT

01

Adding 2+3

Two Standpoints:
 Language and Circuits

You can regard formulas as
statements capable of being
true or false, e.g. statements
about how things are, who is

guilty or innocent, etc.

You can also
regard formulas as

representing circuits with
inputs and outputs. The

inputs are the values (0 or 1) of
the atomic formulas and the
output is the value (0 or 1)

of the complex
formula.

Conjunction, Disjunction, and
Negation…What About Implication?

For
next
class….

