

The One

Brouwer

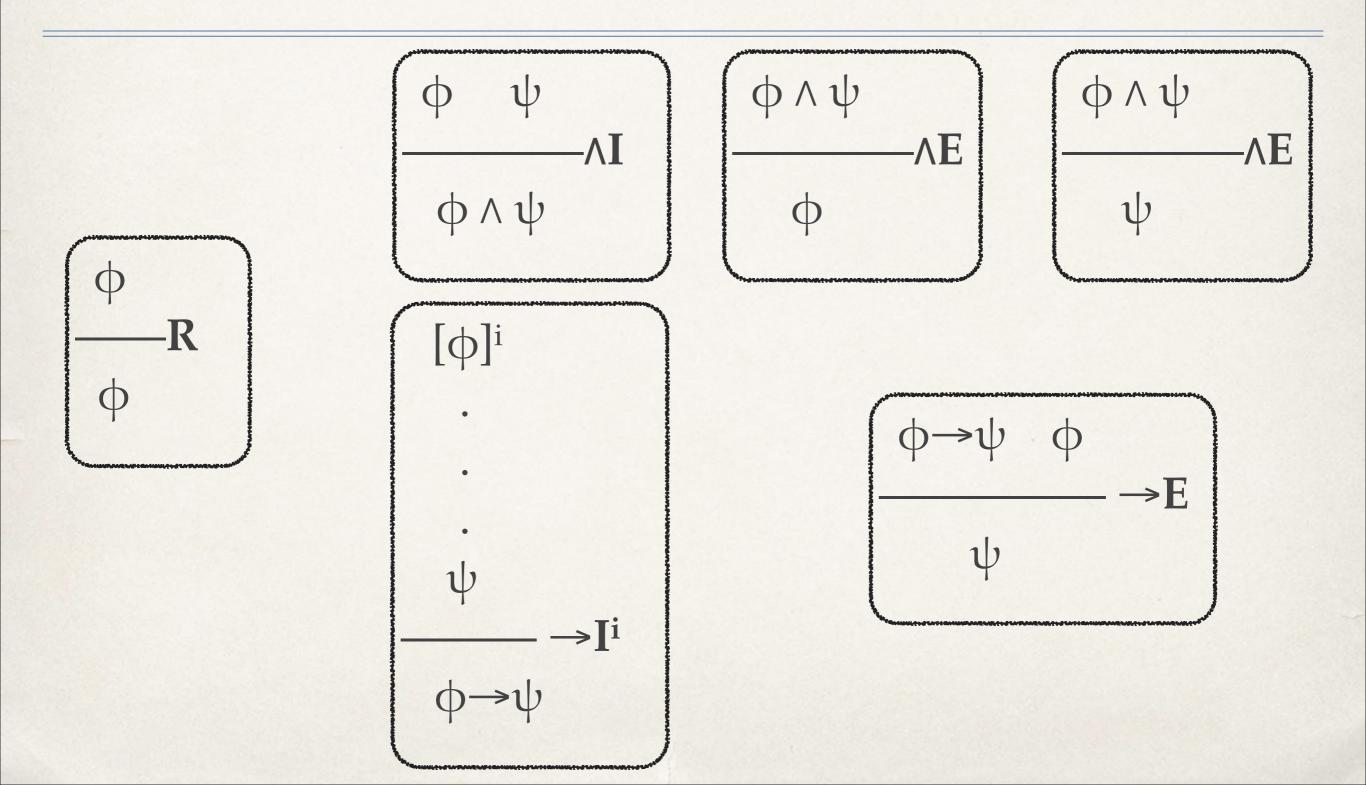
B+*S*

PHIL 50 - Introduction to Logic

Marcello Di Bello, Stanford University, Spring 2014

Week 3 — Wednesday Class - Derivations in Propositional Logic (CONTINUED)

Summary of Monday's Rules

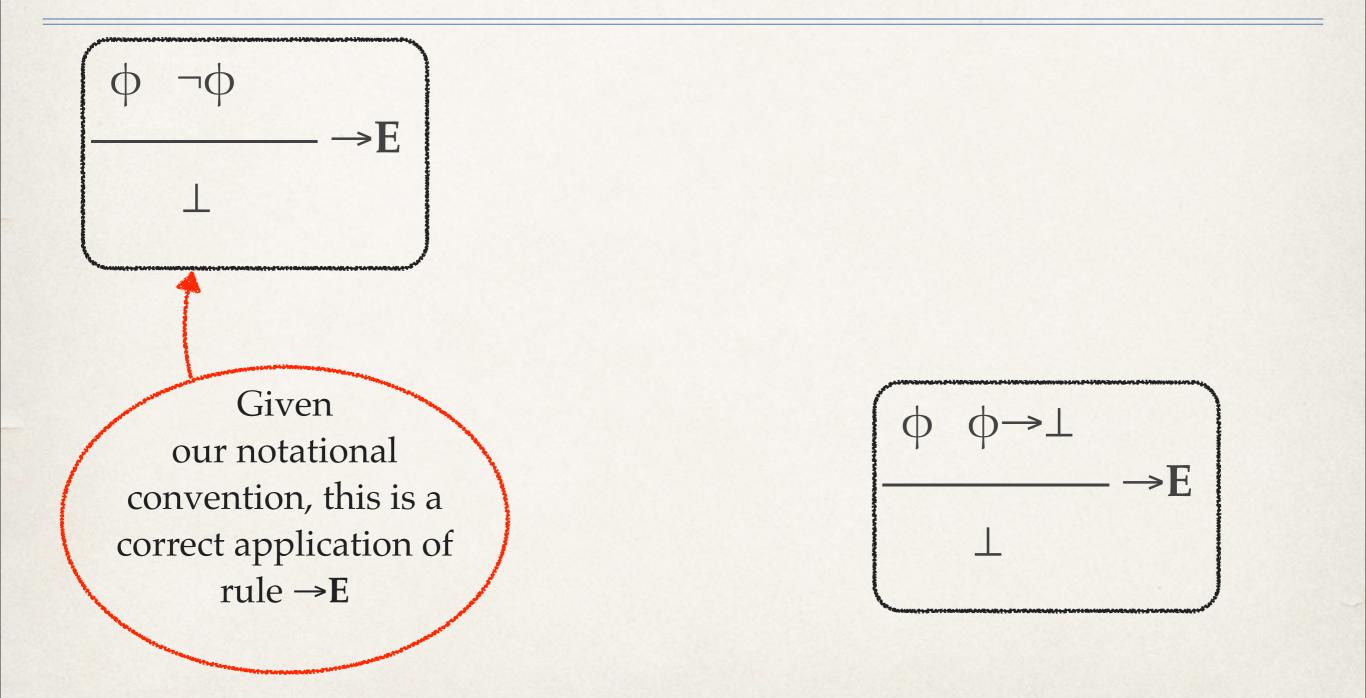


A Peculiarity of Our Propositional Language

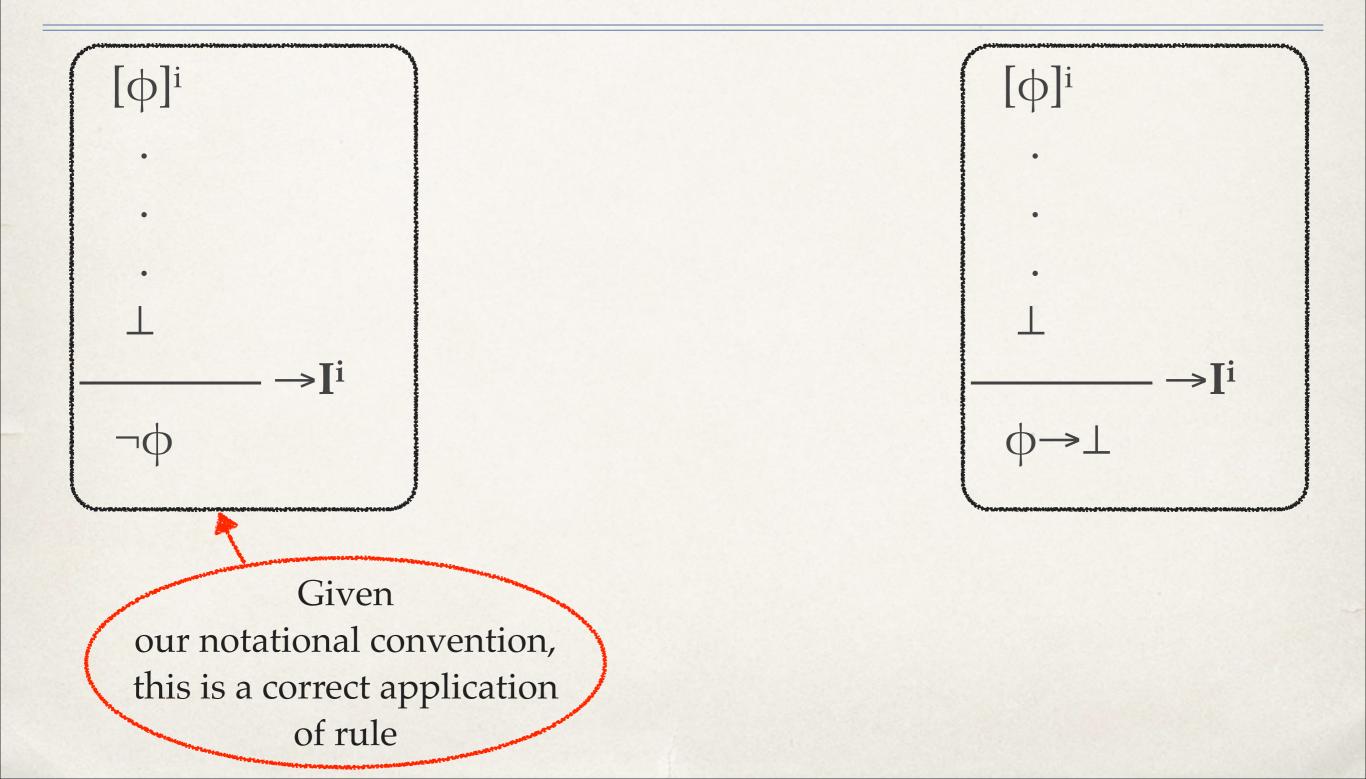
Notational Convention:We shall consider negated formulas of the form $\neg \phi$ as abbreviations of $\phi \rightarrow \bot$

We can convince ourselves that this notational convention is semantically plausible by looking at the truth tables for $\neg \phi$ and $\phi \rightarrow \bot$.

An Application of \rightarrow E



An Application of \rightarrow I



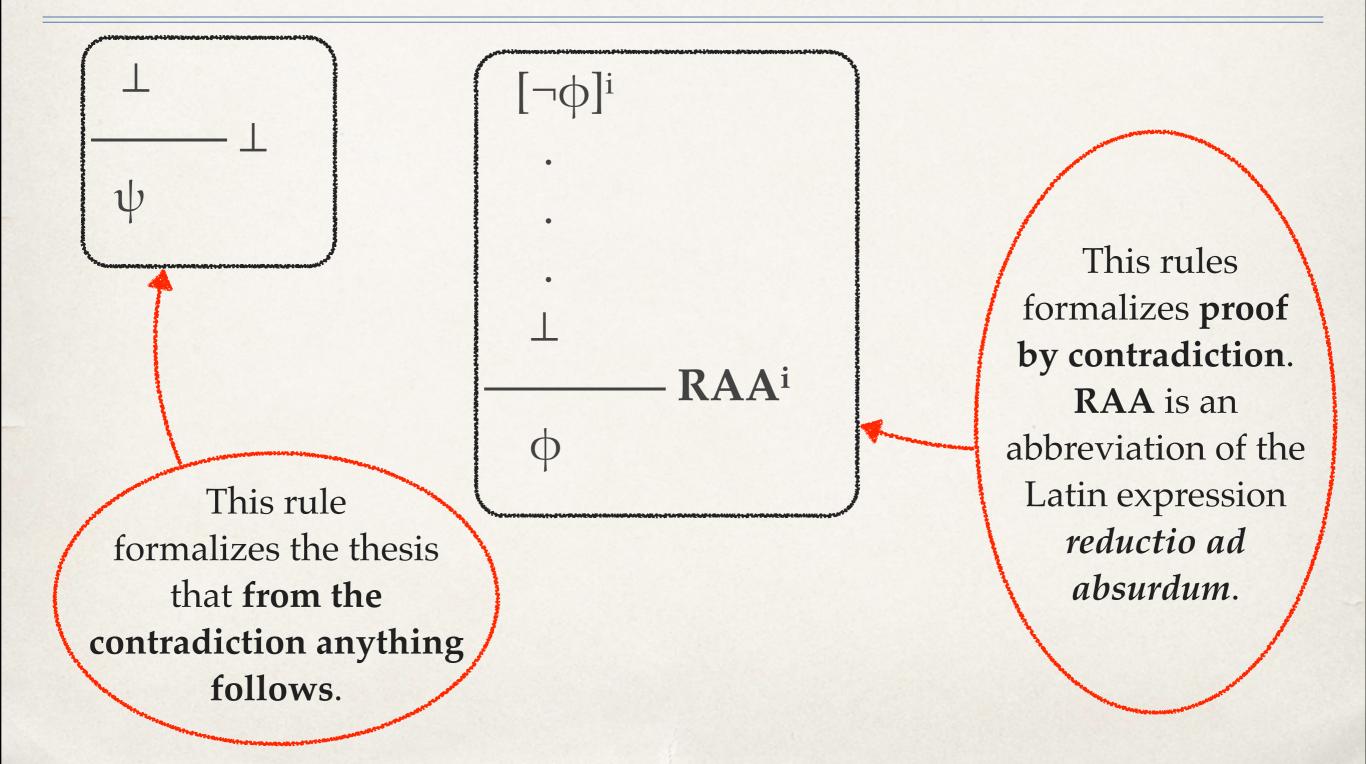
Deriving the PNC

$$\begin{bmatrix} \phi \land \neg \phi \end{bmatrix}^{1} & [\phi \land \neg \phi]^{1} \\ \hline & & \wedge E \\ \phi & & \neg \phi \\ \hline & & & \rightarrow E \\ \hline & & & & \downarrow \\ \hline & & & & & - \rightarrow I^{1} \\ \neg(\phi \land \neg \phi)
\end{bmatrix}$$

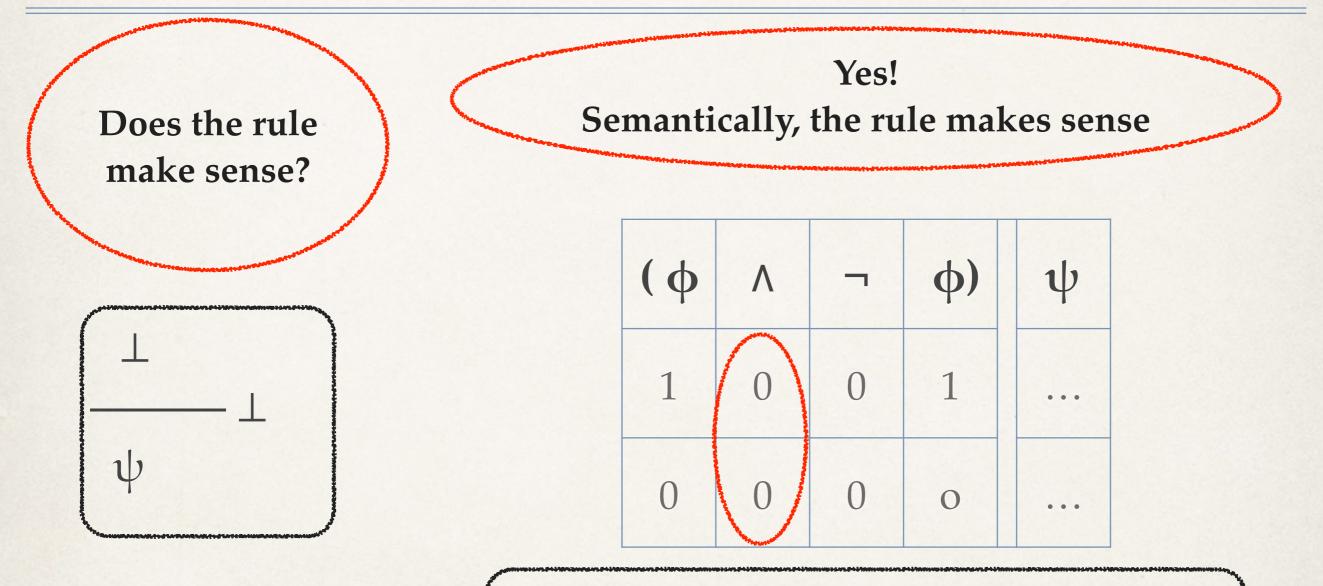
Note the use of our notational convention in the application of rules \rightarrow E and \rightarrow I

Now Let's See Some New Rules

Rules for ⊥



From the Contradiction Anything Follows (*ex contradictione quodlibet*)



We can always write $\bot \models \psi$ no matter what the truth value of ψ turns out to be because holds $\bot \models \psi$ vacuously.

Proof by Contradiction (reductio ad absurdum)

 $\begin{bmatrix} \neg \varphi \end{bmatrix}^{i}$ \vdots L RAA^{i} φ

The idea behind this form of reasoning is that you can establish a positive claim φ by showing that the negation of φ leads to a contradiction.

This is a form of **indirect proof** because you do not establish ϕ directly but by showing that its negation implies a contradiction.

Proof by Contradiction: Zeno of Elea

*Suppose MANY THINGS EXIST.

- If they are many, they will be as many as they are, no more and no fewer. Thus, they will be finite.
- If there is a finite number of things, there will be an infinite number of things, because something will exist between two things, and so on.

So, there will be a finite and an infinite number of things. Contradiction.
Hence, ALL IS ONE.

Galileo's Critique of Aristotle

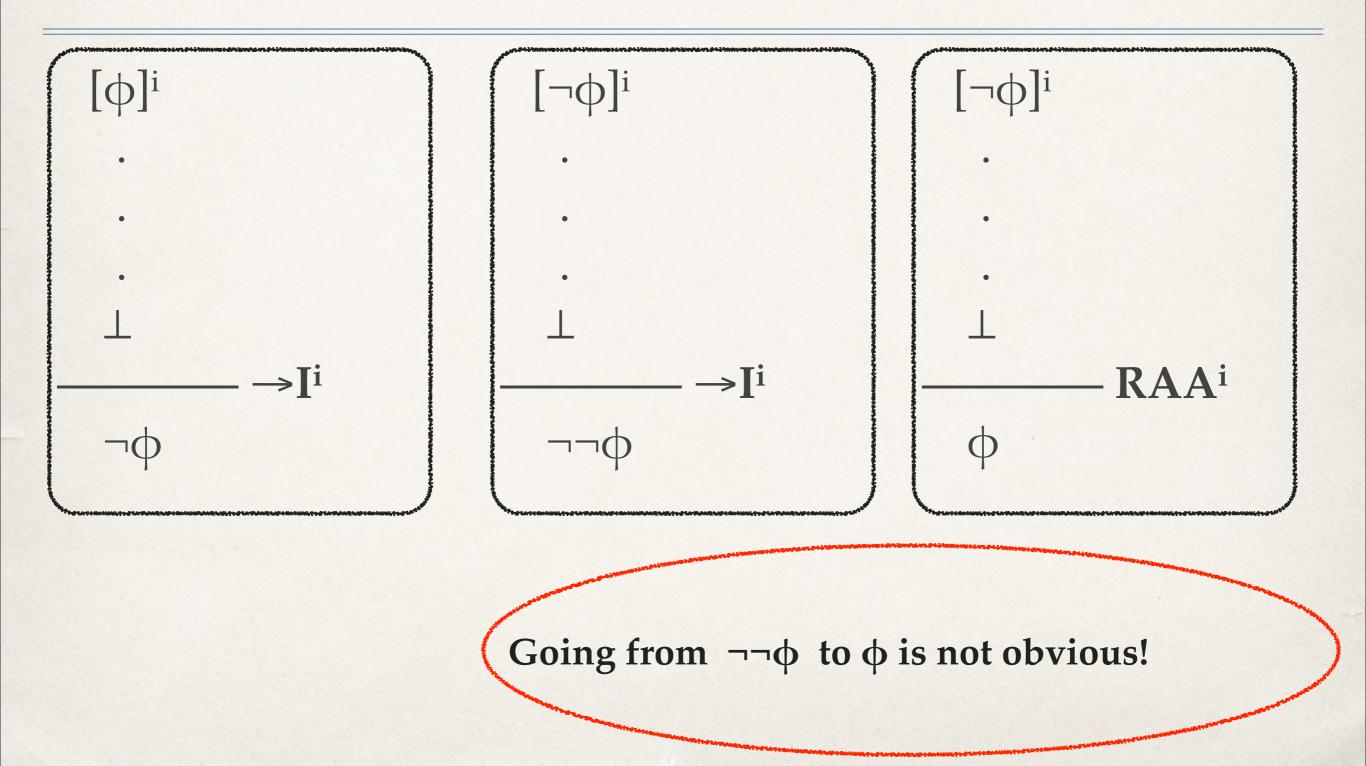
Aristotle thinks that heavier bodies fall faster than lighter ones, i.e. speed is proportional to weight (other things being equal).

Take a small and a bigger body, **S** and **B**. If they are combined, **S** will slow down **B**, so **S+B** will fall slower than **B** alone. But **S+B** is heavier than **B**, so **S+B** must fall faster.

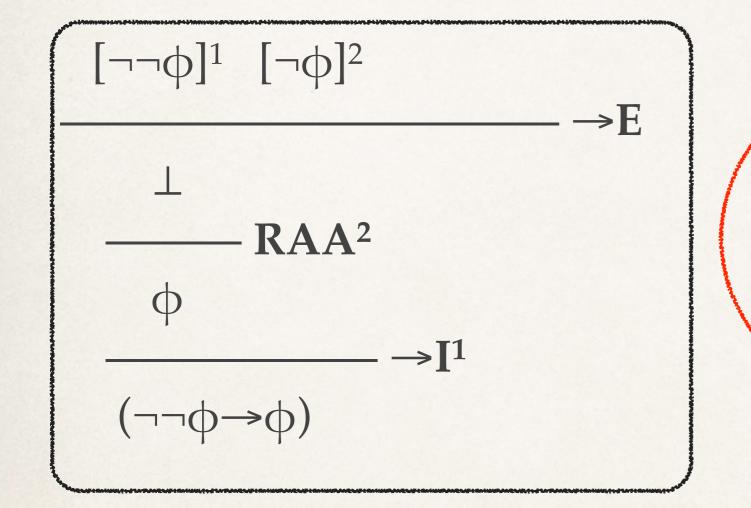
S+B must fall slower **and** faster than **B** alone. Contradiction!

What argument is this? RAA? That depends on the conclusion we draw from the contradiction.

Do Not Confuse -> I with RAA



Establishing $\vdash (\neg \neg \phi \rightarrow \phi)$



The formula $\neg \neg \varphi \rightarrow \varphi$ says that **two negations make an affirmation**.

The derivation of $\neg \neg \phi \rightarrow \phi$ crucial rests upon **RAA**

Intuitionistic logic

Those who deny **RAA** or principles like $\neg\neg \phi \rightarrow \phi$ are called **intuitionistic logicians**.

They believe that in mathematics there should be no indirect proofs, but only direct ("constructive") proofs.

Brouwer