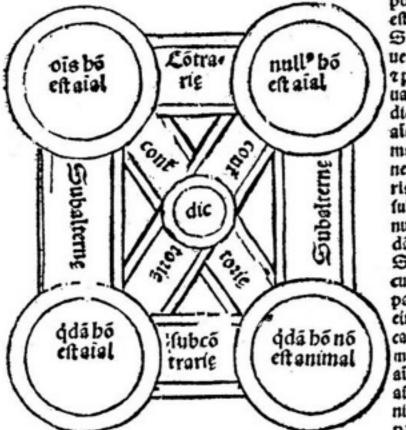
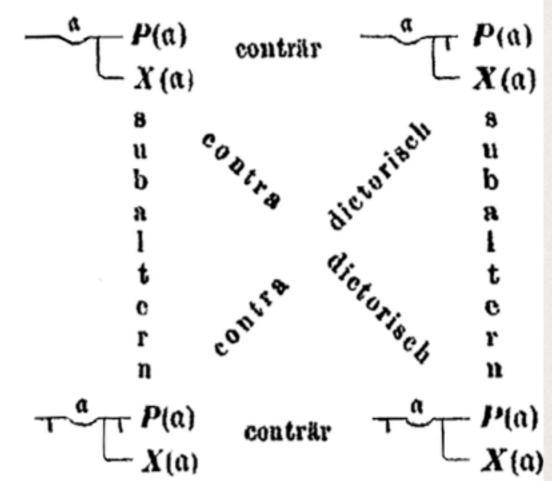
vniuerialis affirmatiua z particularis negatiua:vt ols bo elt atal:quida bo no elt atal:t vniuerialis negatiua z pricularis affirmatiua ciuide inbiecti t



odicati: vt nullus bo eft aial:qda boe aiat Subalterne Subalterne funt vils uerfalis affirmatius z pticularis affirmati ua eiufde fubiecti 2 ps dicati: vt omis bo eft alal/quida bo eft ant mal. Et vniuerfalis negatius t particulas ris negatius eiufdem fubiecti e pdicati : vt nullus boeft aial/qui da bomo eft animal. Subcotrarie Subcotrarie funt pri cularis affirmatina 2 particularis negativa ciufde fublecti t pdts cati vt gda bo eft anis mal/quida bonon eft aial. Comprebedunt autin ppolito indefi nita z fingularis fub particulari. Bagnic.

rgiebt sich die Tafel der logischen Gegensät



quid de vna dicif/idem de alia intelligendu eft. Doutet aut ppolitionu op politaru iubiecta z predicata teneri fignificatiue:eque ample: eque fricte z code genere inpositionis. Omniu dictoru exempla patent in figura pre in-

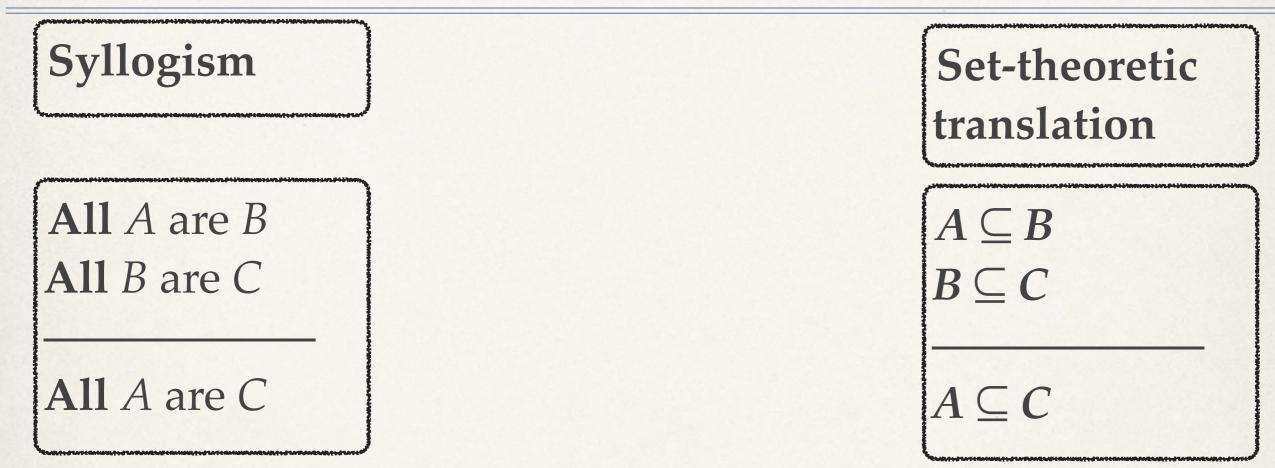
Squares of Oppositions

PHIL 50 - Introduction to Logic

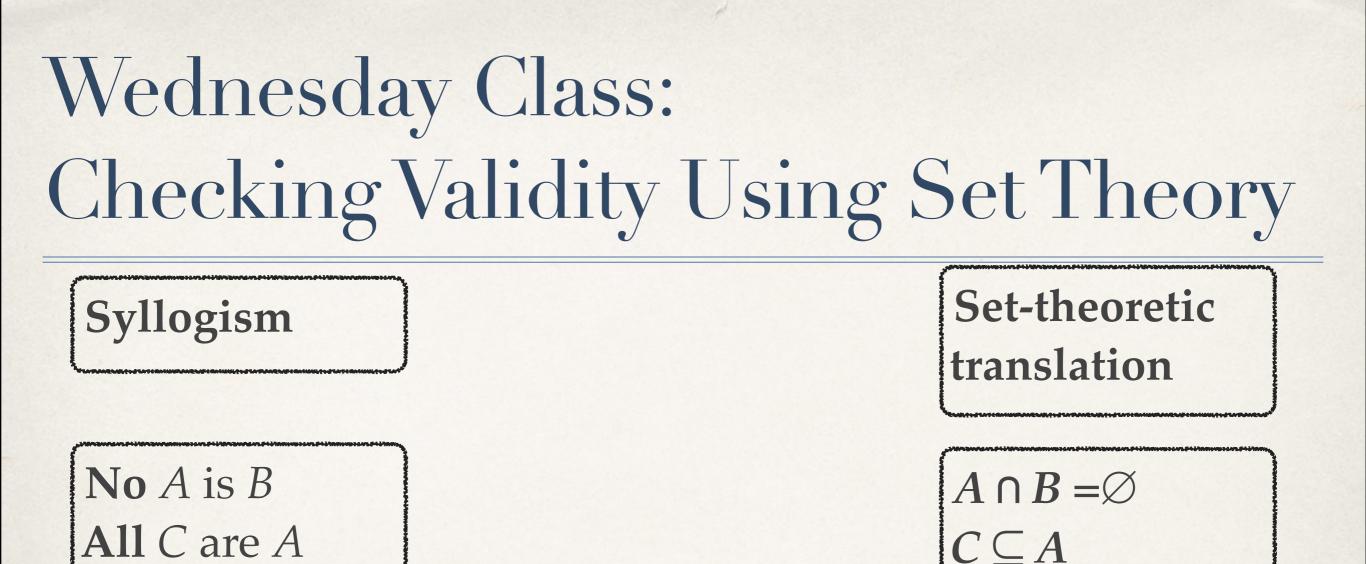
Marcello Di Bello, Stanford University, Spring 2014

Week 5 — Friday Class - The Square of Oppositions

Monday Class: Checking Validity Using Set Theory



We showed the validity of the syllogism by **relying on reasoning about** ⊆



We showed the validity of the syllogism by relying on reasoning about the subset relation \subseteq and the intersection operation \cap

 $C \cap B = \emptyset$

No C is B

Wednesday Class: Counterexample to Validity

All tomatoes are rotten Some chickpeas are **not** rotten

No chickpeas are tomatoes

All *A* is *B* **Some** *C* are **not** *B*

No C is A

$A \subseteq B$ $C \not\subseteq B$
$C \cap \mathbf{A} = \emptyset$

```
Counterexample:
```

```
Tomatoes = {a}
Rotten = {a, b}
Chickpeas = {a, b, c}
```

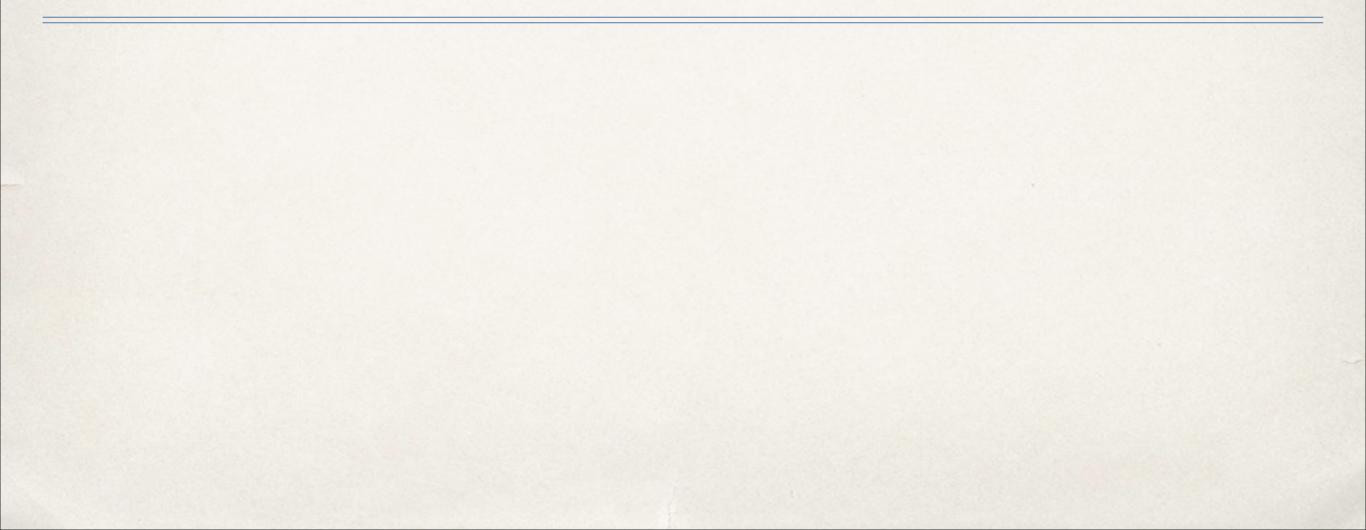
Be Aware of Russell's Paradox

We should define our sets carefully to avoid the contradiction

Instead of $\{x \mid x \text{ is } P\}$, it's better to write $\{x \in U \mid x \text{ is } P\}$ where U is the universe of discourse

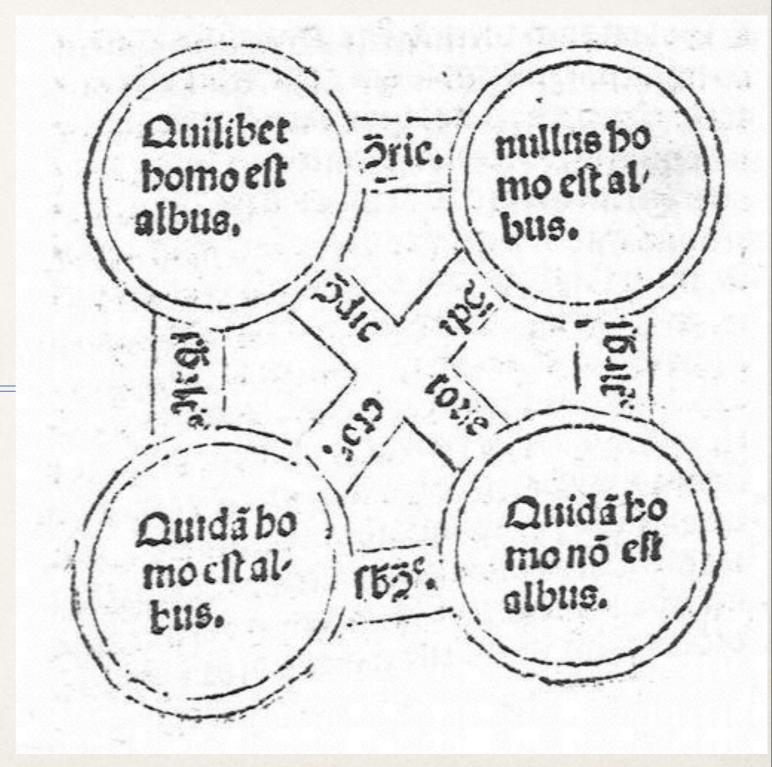
The set of all sets cannot itself be a set

Let's Now Turn to **The Square of Oppositions**



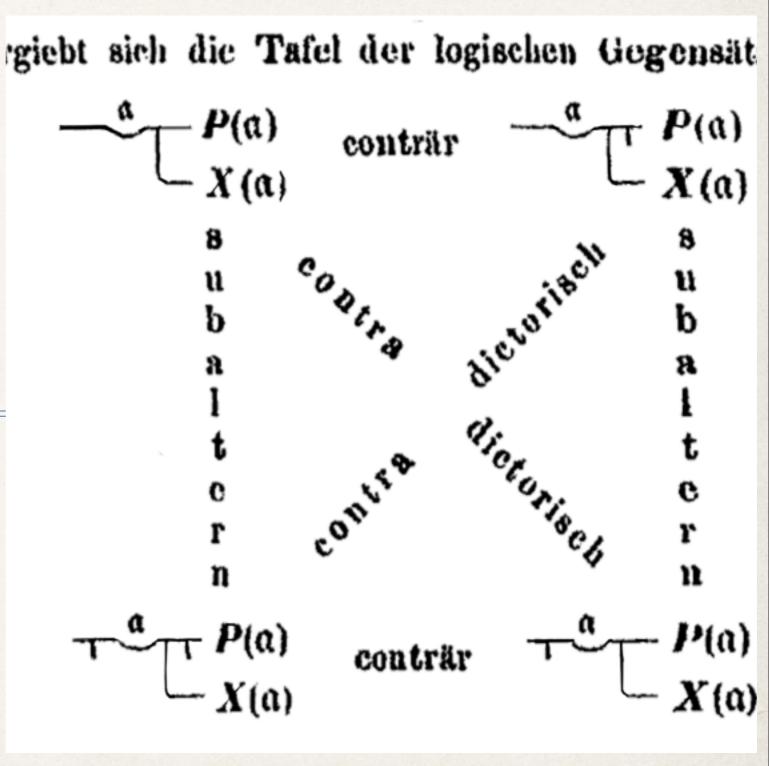
Medieval Square of Oppositions

From Latin...



Frege's Square of Oppositions

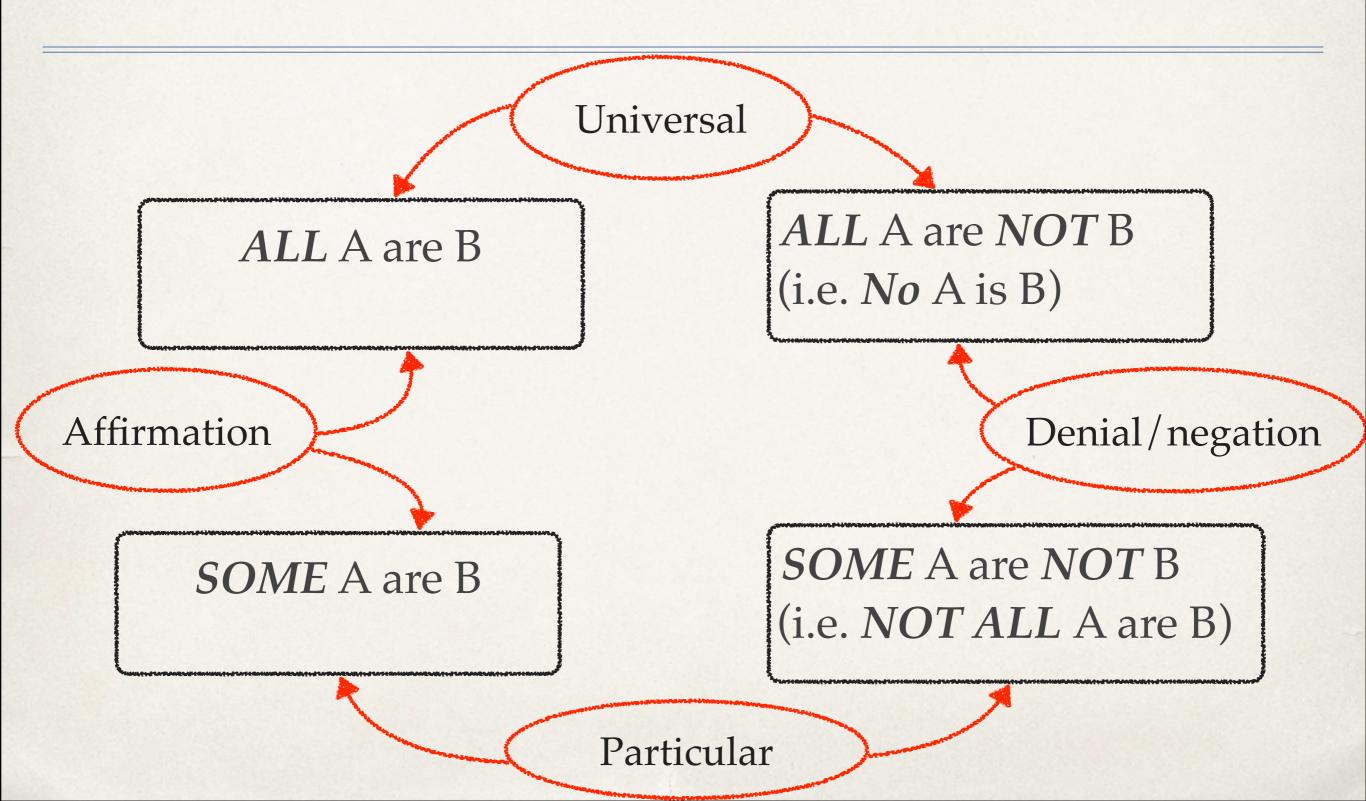
...to German and symbolic notation



The Four Types of Statements That Can Occur as Premises or Conclusion in a Syllogism

All A are B Some A are B All A are not B (i.e. No A is B) Some A are not B (i.e. Not all A are B)

Aristotle's Classification of Statements



Four Types of Statements

Universal affirmative

Universal negative

Particular affirmative

Particular negative

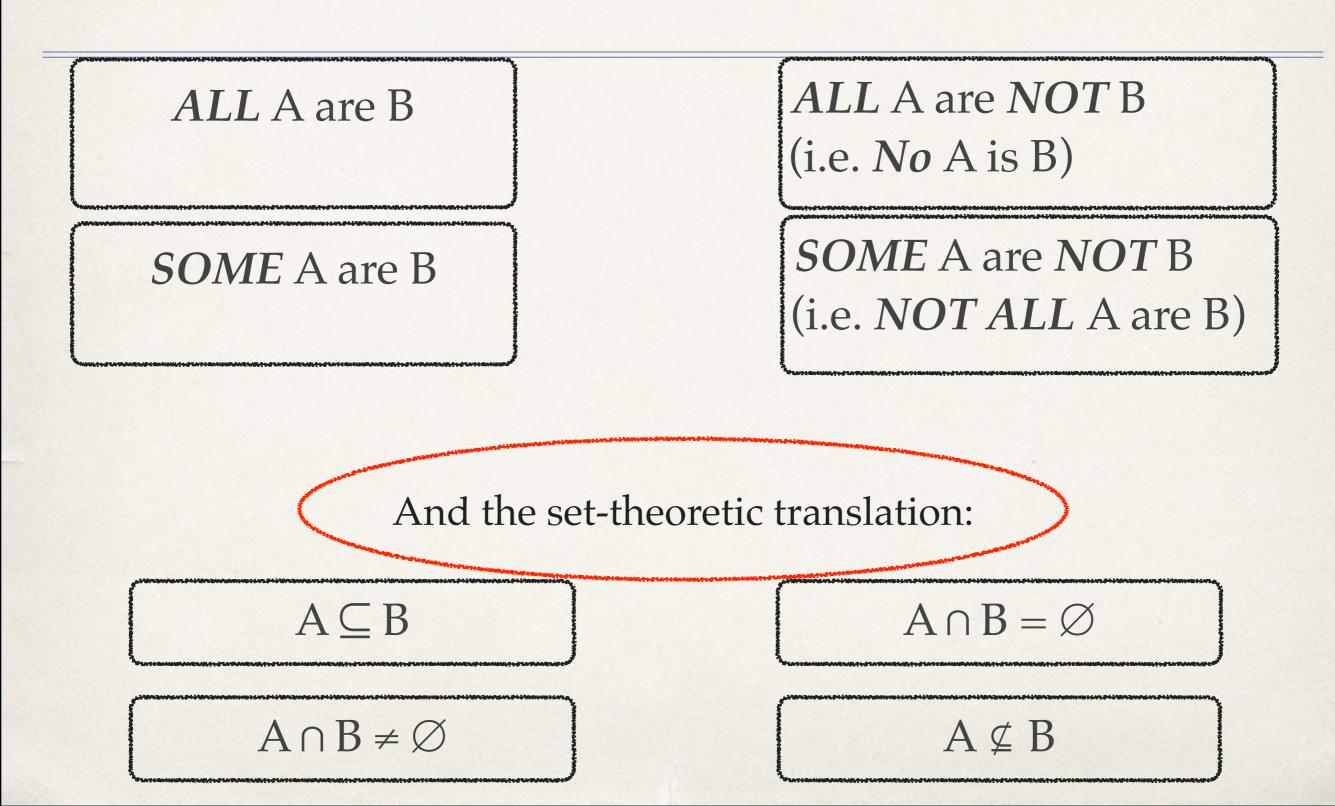
All lizards are bald creatures

All lizards are **not** bald creatures (i.e. No lizard is a bald creature)

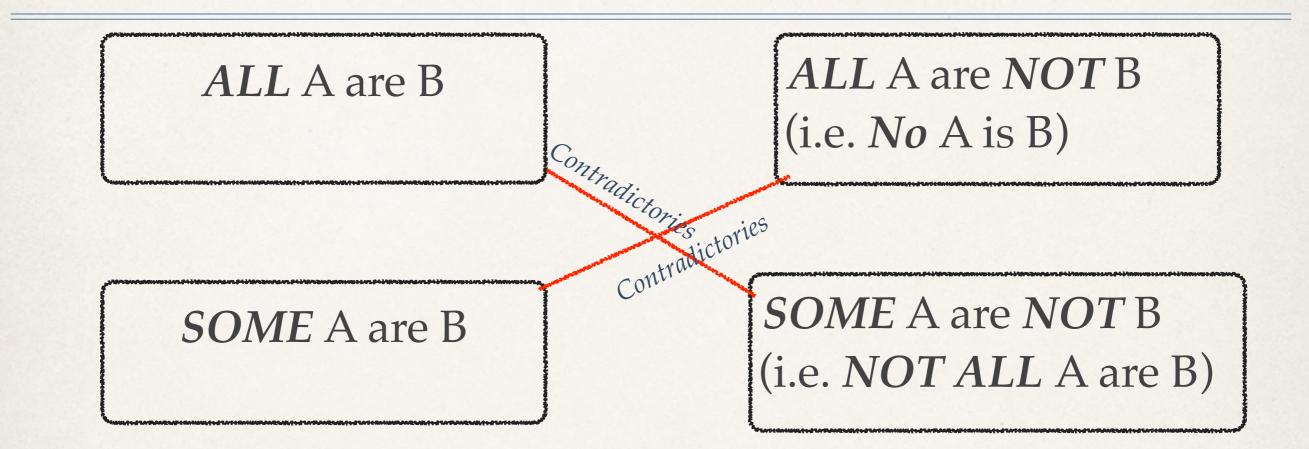
Some lizards are bald creatures

Some lizards are **not** bald creatures (i.e. **Not all** lizards are bald creatures)

Aristotle's Square of Oppositions

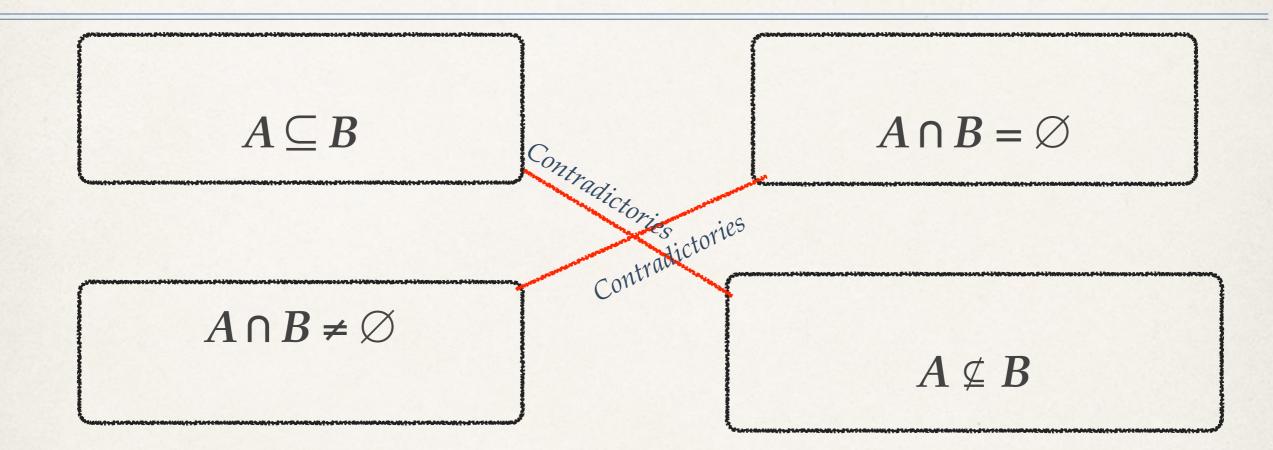


Contradictory Statements



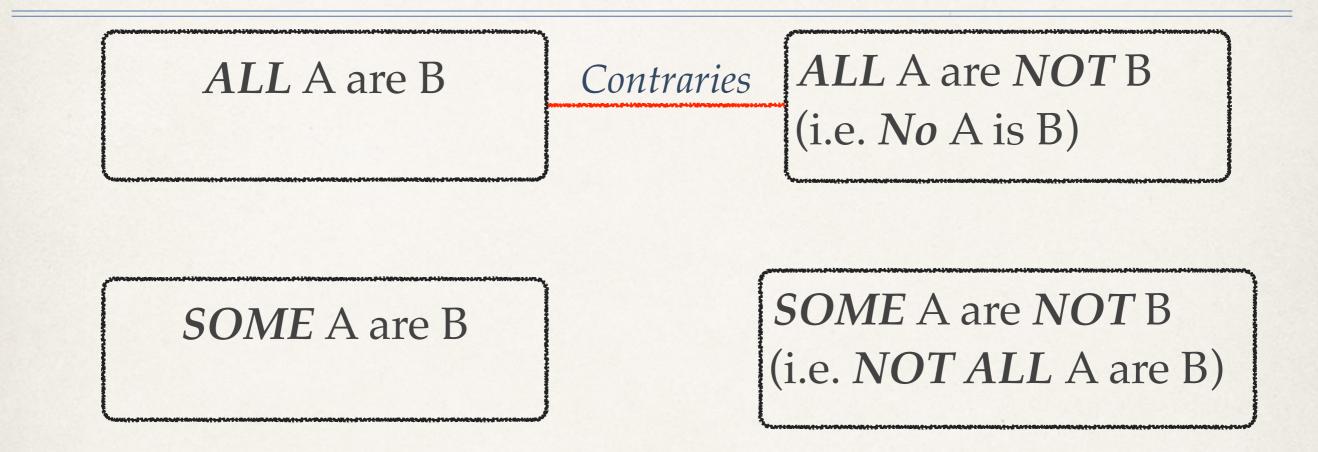
Contradictory statements are such that **they cannot be both true, nor can they be both false.**

...And in the Language of Set Theory



In the language of set theory, it is easier to see the relation of contradiction

Contrary Statements



Contraries are such that **they cannot be both true**, **but they can be both false** (*provided A is non-empty*).

Contraries Cannot Be Both True

We need to show that "All A are B" and "All A are NOT B" cannot be both true. In terms of set theory, we need to show that from (*) $A \subseteq B$ and (**) $A \cap B = \emptyset$, we arrive at a contradiction.

Suppose (***) there is an element **a** such that $\mathbf{a} \in \mathbf{A}$

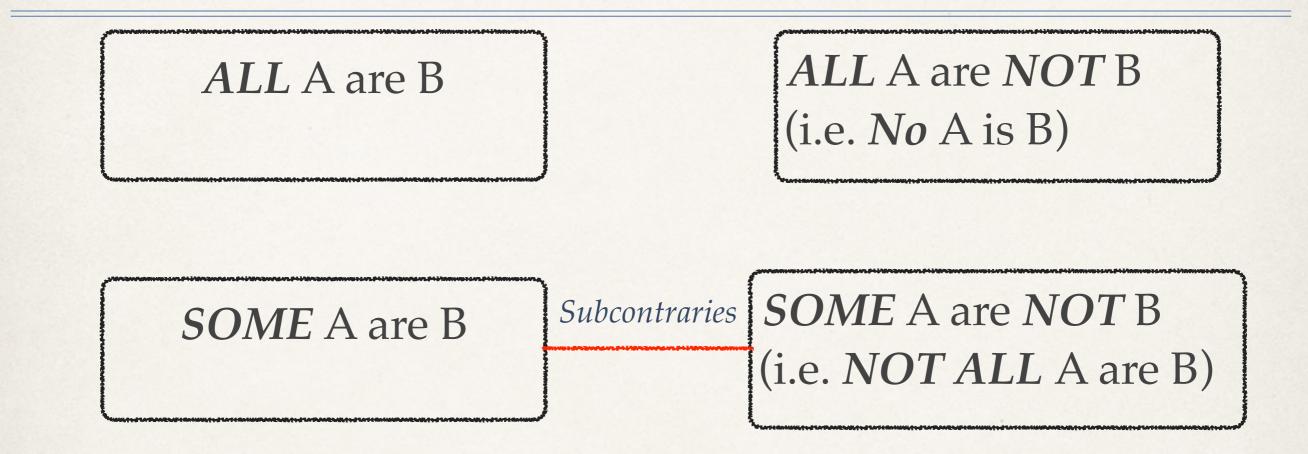
Since (**) $A \subseteq B$, it follows that $a \in B$.

So, $a \in A$ and $a \in B$, which means that $A \cap B \neq \emptyset$.

This contradicts (**) $\mathbf{A} \cap \mathbf{B} = \emptyset$.

NB: If **A** is empty, then the argument does not work!

Subcontrary Statements



Subcontrary statements are such that they cannot be both false, but they can be both true.

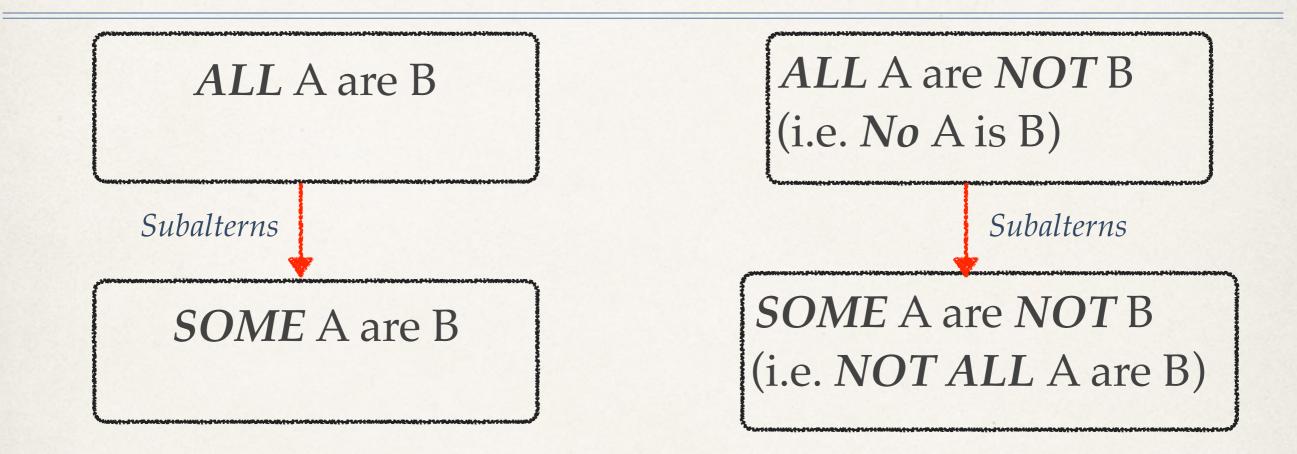
Subcontraries Cannot Be Both False

We need to show that "Some A are B" (think of $A \cap B \neq \emptyset$) and "Some A are NOT B" (think of $A \nsubseteq B$) cannot be both false.

So, we need to show *if* $\mathbf{A} \cap \mathbf{B} \neq \emptyset$ does not hold *and* $\mathbf{A} \not\subseteq \mathbf{B}$ do not hold either, *then* we arrive at a contradiction. And this amounts to showing that from $\mathbf{A} \cap \mathbf{B} = \emptyset$ and $\mathbf{A} \subseteq \mathbf{B}$ we arrive at a contradiction.

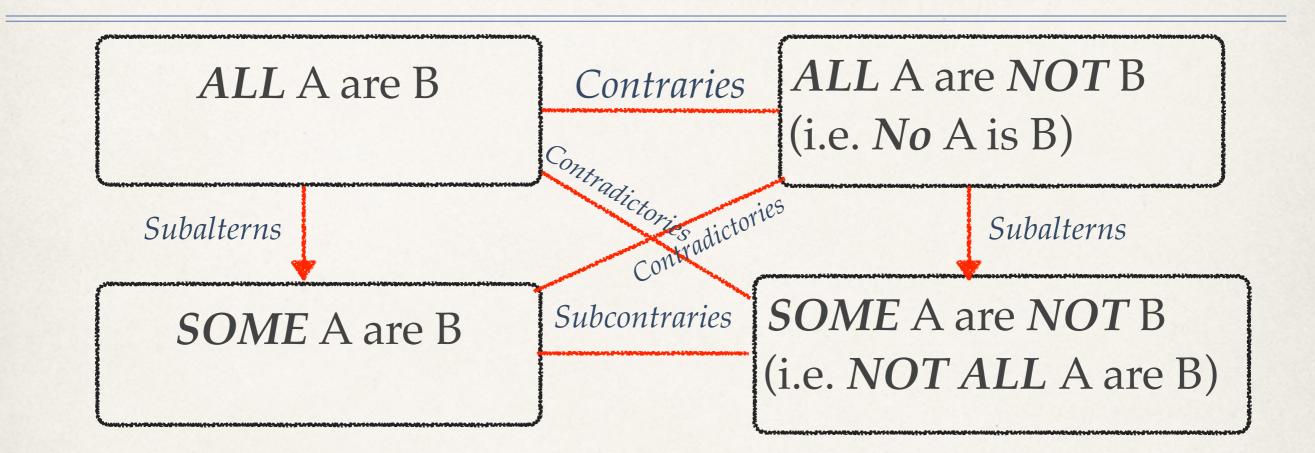
We have proven this earlier while reasoning about contrary statements (*assuming* **A** *is non-empty*).

Subaltern Statements



Aristotle believed that "All A are B" implies "Some A are B" and that "All A are not B" implies "Some A are not B". *This, once again, holds provided the set A is non-empty.*

The Square of Oppositions at a Glance



The square of oppositions captures, in a general form, the logical relations between four types of statements. **It is an example of one of the first logical systems.**

Medieval Naming Conventions

Medieval Logicians Called this Syllogistic Pattern BARBARA...

All *B* are *C* All *A* are *B*

All A are C

Why such a name?

Some Latin

"adfirmo" is the Latin for "I assert"

The *universal affirmative* was referred to as **A**

The *particular affirmative* was referred as **I**

"**nego**" is the Latin for "I deny"

The *universal negative* was referred to as **E**

The *particular negative* was referred to as **O**

Back to BARBARA

All *B* are *C* All *A* are *B*

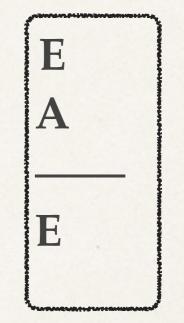
All A are C

The syllogism contains three universal affirmative statements, each referred to as **A**, hence the mnemonic name b**A**rb**A**r**A**

Example of CELARENT (cElArEnt) Syllogistic Pattern

No *A* is *B* **All** *C* are *A*

No *C* is *B*



A comparison Between Propositional Logic and Syllogistic Logic

Syllogistic logic allows us to reason with statements (or formulas) of the form All A are B Some A are B All A are Not B (i.e. No A is B) Some A are Not B (i.e. Not all A are B)

Propositional logic allows us to reason with statements (or formulas) of the form

p, q, r ... $\neg \psi$ $\phi \wedge \psi$ $\phi \lor \phi$ $\phi \rightarrow \psi$

Can we combine the two logics into a more powerful logic?

Combining Propositional Logic with Syllogistic Logic is Possible through Predicate Logic

This is for next week....

