
PHIL 50 - Introduction to Logic
Marcello Di Bello, Stanford University, Spring 2014

Week 7 — Monday Class - Syntax and Semantics of Predicate Logic

“The river is flowing
surrounded by trees”

Language, meaning,
and the world

This Week We’ll Look at
Predicate Logic More Closely

Syntax: rules to build
well-formed formulas!

Semantics: rules to
assign (truth) values
to these formulas

SYNTAX of Predicate Logic

The Ingredients of the Language
of Predicate Logic

Constant symbols: a, b, c, …!
!
Variable symbols: x, y, z, …!
!
Predicate symbols: A, B, C, …!
!
Logical connectives or operators: ¬, ∧, ∨, →!
!
Existential quantifier: ∃x (“there is an x”)!
!
Universal quantifier: ∀x (“for all x”)

} We shall refer to constant and
variable symbols as terms

Inductive Definition of Formulas of
the Language of Predicate Logic
Base case: !
 If t1, t2, …, tk are terms, and P is a predicate, P(t1, t2, …, tk) is a formula.!
!
Inductive steps or cases: !
 If φ is a formula, then ¬φ is a formula.!
 If φ and ψ are formulas, then (φ ∧ ψ) is a formula.!
 If φ and ψ are formulas, then (φ ∨ ψ) is a formula.!
 If φ and ψ are formulas, then (φ → ψ) is a formula.!
!
 If φ is a formula and x is a variable, then ∃x(φ) is a formula.!
 If φ is a formula and x is a variable, then ∀x(φ) is a formula.!
!
Final clause: Nothing else is a formula.

φ and ψ are
not formulas, but

placeholders for
formulas

Think of the Syntax of Predicate
Logic as a Set of Grammar Rules to
Check Whether a Formula is
Grammatical (i.e. Well-formed) or not.

 ∃x¬∀x (A(x) → B(y))!
!
 ∃x!
!
 ¬∀x (A(x) → B(y))%
!
 ¬%
 %
 ∀x(A(x) → B(y))%
!
 ∀x%
% % %
 A(x) → B(y)%
 %
 →%
 A(x) B(x)%

∀x(A(x) ∨ ∀z(C(y) ∧ B(y))!
!
 ∀x !
!
 (A(x) ∨ ∀z(C(y) ∧ B(y))%
!
 ∨%
 %
 A(x) ∀z(C(y) ∧ B(y))%
!
 ∀z%
!
 C(y) ∧ B(y)%
!
 ∧%
 C(y) B(y)

SEMANTICS of Predicate Logic

Today we will only consider how to
interpret formulas without

variables and quantifiers. We will
look at the semantics for quantified

formulas on Wednesday.

A(a) ∧ B(c)!
!

Eat(a, b) → Sleep(a)!
!

¬Eat(a, b) → Starve(a)

Before we Painstakingly Delve into
the Semantics of Predicate Logic,
Let’s Think About it for a Moment

A Language as a Combination of
Syntax and Semantics
Any language—be it a natural language or a formal language—has
grammatical rules for how to construct grammatical sentences (or
formulas, in the case of a formal language). This is the syntax.%
!
From the syntactic point of view, a language is just a bunch of symbols
put together according to grammar rules.!

How is it that symbols can be assigned
meaning? How can they acquire meaning?

But in order to serve any purpose at all, the symbols must be assigned a
meaning. This is the semantics of the language.

How can THIS mean THAT?

“The river
is flowing
surrounded
by trees”

A Simple Suggestion

The word “river” means RIVER-IN-REALITY!
!
The word “trees” means TREES-IN-REALITY!
!
The word “surrounded” means SURROUNDED-IN-REALITY!
!
The word “flowing” means FLOWING-IN-REALITY

“The river is flowing
surrounded by
trees”

But is that all there is to the linguistic
meaning of words and sentences?

What about the Meaning of “Is” and
of the Logical Connectives?

“The river IS flowing”!
!
“The river IS NOT flowing”!
!
“The river is flowing AND the trees
are surrounding it.!
!
Etc.

It seems that
words such as “is”,

“not”, “and” etc. do not
have any direct

correspondence to
things in reality. %

Another Surprising Aspect of
Language is that Sentences Can Be
True or False. How Can That Be?

How can a Sentence be TRUE or FALSE?
“The river is flowing surrounded by trees”

NB: Words
alone cannot
be true or false,
but sentences
can. How can
that be?

What is
truth?

As You Learn the Semantics of
Predicate Logic, Think of the Questions:

(Q1) %
How is it that words and

sentences end up
possessing meaning?

(Q2) How is it that
sentences (but not words

alone) can be true or false?
And more generally, what

is truth?

We Now Need to Introduce the
Notion of a MODEL

Model (and Truth in a Model)

A model M is a tuple ⟨D, I, g⟩ where!
!
 ! D is the domain, i.e. D is a non-empty set of objects!
!
! I is an interpretation function that behaves as follows:!
! I assigns to every constant symbol an element of D!
! I assigns to every 1-place predicate symbol a subset of D!
! I assigns to every 2-place predicate symbol a subset of D × D!
!
! g [we will discuss “g” tomorrow; “g” interprets variables]

 M ⊨ φ iff φ is true in (relative to) model M which is ⟨D, I, g⟩

Example of a Domain D

The Interpretation Function for
Constant Symbols

“a”

“c”

“b”

I(a) = I(b) = I(c) = D={ , , }

The Interpretation Function for 1-
place Predicate Symbols

“A”

“B”

I(A) ={ , } I(B) = { , } I(C)={ , }

“C”

The Basic Idea

Constant symbols refer to objects %
!
(i.e. I assigns an object to every
constant symbol)

Predicate symbols refer to sets of objects%
!
(I.e. I assigns a set of objects to every
predicate symbol)

How To Assess the Truth of Formulas Containing
Constant Symbols and 1-place Predicates

The rough idea is that the formula A(a) is true whenever the objects which
corresponds to the constant symbol a is in the set of objects which
correspond to the predicate symbol A.

Let P be a 1-place predicate symbol and let c be a constant symbol. We have:!
!
! ! M ⊨P(c) iff I(c) ∈ I(P) Recall: M is ⟨D, I, g⟩!
!
! ! M ⊭P(c) iff I(c) ∉ I(P)

Illustration

M ⊨ A(b) !
!
 M ⊨ B(c)!
!
 M ⊭ C(b)

I(a) = I(b) = I(c) =

I(A) ={ , } I(B) = { , } I(C)={ , }

because I(b) ∈ I(A) !
!
 because I(c) ∈ I(B)!
!
 because I(b) ∉ I(C)

From 1-place Predicates
 to 2-place Predicates

In order to give an
interpretation for 2-
place predicates, we

should talk about sets of
ordered pairs of objects

1-place predicates: !
American(…)%

Fruit(…)%
!

2-place predicates:!
Eat(…, …)%

Like (…, …)%

Ordered Pairs

Consider the domain D= { , , }.!
!
 The set D × D is the set of all 9 ordered pairs, as follows:!
!
 { ⟨ , ⟩ ⟨ , ⟩ ⟨ , ⟩ %
!
 ⟨ , ⟩ ⟨ , ⟩ ⟨ , ⟩ %
!
 ⟨ , ⟩ ⟨ , ⟩ ⟨ , ⟩ } %

D × D is called the Cartesian Product for D and consists of all ordered
pairs that can be obtained from D.

Sets of Objects versus
Sets of Ordered Pairs of Objects

A 1-place predicate is interpreted set-theoretically as a set of objects (of
those objects which satisfy the 1-place predicate in question).!
!
Similarly, a 2-place predicate is interpreted set-theoretically as a set of
ordered pairs of objects (of those ordered pairs which contain objects that
satisfy the 2-place predicate in question). !
!
Example: the interpretation of the 2-place predicate Eat(… , …) is the set
of ordered pairs of objects such that the first object in the pair eats the
second object in the pair. !

The set D × D is the set of all 9 ordered pairs, as follows:!
!
 { ⟨ , ⟩ ⟨ , ⟩ ⟨ , ⟩ %
!
 ⟨ , ⟩ ⟨ , ⟩ ⟨ , ⟩ %
!
 ⟨ , ⟩ ⟨ , ⟩ ⟨ , ⟩ } %

The interpretation I assigns a subset of D × D to each 2-place predicate symbol.

Illustration

 Example: I(Eat) = { ⟨ , ⟩ , ⟨ , ⟩ }

Truth for Formulas Containing
Constant Symbols and Predicates
The rough idea is that e.g. the formula Eat(a, b) is true whenever the
object that corresponds to the constant symbols a and the object that
corresponds to the constant symbol b form an ordered pair that is in set
of ordered pairs that correspond to the 2-place predicate Eat.

Let P2 be a 2-place predicate symbol and let c1 and c2 be constant symbols. !
We have:!
!
! M ⊨P2(c1, c2) iff ⟨I(c1), (I(c2) ⟩ ∈ I(P2) Recall: M is ⟨D, I, g⟩!
!
! M ⊭P2(c1, c1) iff ⟨I(c1), (I(c2) ⟩ ∉ I(P2)

Assessing the Truth of Formulas with
Constants and Predicate Symbols

I(a) = I(b) = I(c) =

 I(Eat) = { ⟨ , ⟩ , ⟨ , ⟩ }

I(A) ={ , } I(B) = { , } I(C)={ , }

M ⊨ A(b) !
M ⊨ Eat(c, a) !
M ⊭ Eat(a, b)

because I(b) ∈ I(A)%
 because ⟨ I(c), I(a) ⟩ ∈ I(Eat)
because ⟨ I(a), I(b) ⟩ ∉ I(Eat)

