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Week 7 — Monday Class - Syntax and Semantics of Predicate Logic

“The river is flowing 
surrounded by trees”

Language, meaning, 
and the world



This Week We’ll Look at  
Predicate Logic More Closely

Syntax: rules to build 
well-formed formulas!

Semantics: rules to 
assign (truth) values 
to these formulas



SYNTAX of Predicate Logic



The Ingredients of the Language  
of Predicate Logic 

Constant symbols: a, b, c, …!
!
Variable symbols: x, y, z, …!
!
Predicate symbols: A, B, C, …!
!
Logical connectives or operators: ¬, ∧, ∨, →!
!
Existential quantifier: ∃x (“there is an x”)!
!
Universal quantifier: ∀x (“for all x”)

} We shall refer to constant and 
variable symbols as terms



Inductive Definition of Formulas of 
the Language of Predicate Logic
Base case: !
    If t1, t2, …, tk are terms, and P is a predicate, P(t1, t2, …, tk) is a formula.!
!
Inductive steps or cases: !
    If φ is a formula, then ¬φ is a formula.!
    If φ and ψ are formulas, then (φ  ∧  ψ) is a formula.!
    If φ and ψ are formulas, then (φ  ∨  ψ) is a formula.!
    If φ and ψ are formulas, then (φ → ψ) is a formula.!
!
    If φ is a formula and x is a variable, then ∃x(φ) is a formula.!
    If φ is a formula and x is a variable, then ∀x(φ) is a formula.!
!
Final clause:  Nothing else is a formula.

φ and ψ  are 
not formulas, but 

placeholders for 
formulas



Think of the Syntax of Predicate 
Logic as a Set of Grammar Rules to 
Check Whether a Formula is 
Grammatical (i.e. Well-formed) or not. 



     ∃x¬∀x (A(x) → B(y))!
!
                      ∃x!
!
          ¬∀x (A(x) → B(y))%
!
                      ¬%
   %
           ∀x(A(x) → B(y))%
!
                     ∀x%
% % %
            A(x) → B(y)%
                     %
                      →%
            A(x)           B(x)%

∀x(A(x) ∨ ∀z(C(y) ∧ B(y))!
!
                      ∀x !
!
        (A(x) ∨ ∀z(C(y) ∧ B(y))%
!
                       ∨%
       %
        A(x)           ∀z(C(y) ∧ B(y))%
!
                                   ∀z%
!
                           C(y) ∧ B(y)%
!
                                    ∧%
                  C(y)                   B(y)



SEMANTICS of Predicate Logic

Today we will only consider how to 
interpret formulas without 

variables and quantifiers. We will 
look at the semantics for quantified 

formulas on Wednesday. 

A(a) ∧ B(c)!
!

Eat(a, b) → Sleep(a)!
!

¬Eat(a, b) → Starve(a)



Before we Painstakingly Delve into 
the Semantics of Predicate Logic, 
Let’s Think About it for a Moment



A Language as a Combination of 
Syntax and Semantics
Any language—be it a natural language or a formal language—has 
grammatical rules for how to construct grammatical sentences (or 
formulas, in the case of a formal language). This is the syntax.%
!
From the syntactic point of view, a language is just a bunch of symbols 
put together according to grammar rules.!

How is it that symbols can be assigned 
meaning? How can they acquire meaning?

But in order to serve any purpose at all, the symbols must be assigned a 
meaning. This is the semantics of the language. 



How can THIS mean THAT?

“The river 
is flowing 
surrounded 
by trees”



A Simple Suggestion

The word “river” means RIVER-IN-REALITY!
!
The word “trees” means TREES-IN-REALITY!
!
The word “surrounded” means SURROUNDED-IN-REALITY!
!
The word “flowing” means FLOWING-IN-REALITY

“The river is flowing 
surrounded by 
trees”

But is that all there is to the linguistic 
meaning of words and sentences?



What about the Meaning of “Is” and 
of the Logical Connectives?

“The river IS flowing”!
!
“The river IS NOT flowing”!
!
“The river is flowing AND the trees 
are surrounding it.!
!
Etc.

It seems that 
words such as “is”, 

“not”, “and” etc. do not 
have any direct 

correspondence to 
things in reality. %



Another Surprising Aspect of 
Language is that Sentences Can Be 
True or False. How Can That Be?



How can a Sentence be TRUE or FALSE?
“The river is flowing surrounded by trees”

NB: Words 
alone cannot 
be true or false, 
but sentences 
can. How can 
that be?

What is 
truth?



As You Learn the Semantics of 
Predicate Logic, Think of the Questions: 

(Q1) %
How is it that words and 

sentences end up 
possessing meaning?

(Q2) How is it that 
sentences (but not words 

alone) can be true or false? 
And more generally, what 

is truth?



We Now Need to Introduce the 
Notion of a MODEL



Model (and Truth in a Model)

A model M is a tuple ⟨D, I, g⟩ where!
!
  ! D is the domain, i.e. D is a non-empty set of objects!
!
! I is an interpretation function that behaves as follows:!
!      I assigns to every constant symbol an element of D!
!      I assigns to every 1-place predicate symbol a subset of D!
!      I assigns to every 2-place predicate symbol a subset of D × D!
!
! g  [we will discuss “g” tomorrow; “g” interprets variables]

 M ⊨ φ       iff           φ is true in (relative to) model M which is ⟨D, I, g⟩



Example of a Domain D



The Interpretation Function for 
Constant Symbols

“a”

“c”

“b”

I(a) =                       I(b) =                     I(c) =                        D={         ,     ,          }



The Interpretation Function for 1-
place Predicate Symbols

“A”

“B”

I(A) ={          ,     }            I(B) = {     ,            }               I(C)={          ,           }  

“C”



The Basic Idea

Constant symbols refer to objects %
!
(i.e. I assigns an object to every 
constant symbol)

Predicate symbols refer to sets of objects%
!
(I.e. I assigns a set of objects to every 
predicate symbol)



How To Assess the Truth of Formulas Containing 
Constant Symbols and 1-place Predicates 

The rough idea is that the formula A(a) is true whenever the objects which 
corresponds to the constant symbol a is in the set of objects which 
correspond to the predicate symbol A. 

Let P be a 1-place predicate symbol and let c be a constant symbol. We have:!
!
! ! M ⊨P(c)  iff  I(c) ∈ I(P)                                             Recall: M is ⟨D, I, g⟩!
!
! ! M ⊭P(c)  iff  I(c) ∉ I(P)   



Illustration

M ⊨ A(b)  !
!
 M ⊨ B(c)!
!
 M ⊭ C(b)               

I(a) =                       I(b) =                     I(c) =                       

I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

because  I(b) ∈ I(A)   !
!
 because I(c) ∈ I(B)!
!
 because I(b) ∉ I(C)



From 1-place Predicates  
                         to 2-place Predicates

In order to give an 
interpretation for 2-
place predicates, we 

should talk about sets of 
ordered pairs of objects

1-place predicates: !
American(…)%

Fruit(…)%
!

2-place predicates:!
Eat(…, …)%

Like (…, …)%
 



Ordered Pairs

Consider the domain D= {         ,        ,          }.!
!
 The set D × D is the set of all 9 ordered pairs, as follows:!
!
 { ⟨            ,            ⟩           ⟨            ,            ⟩                 ⟨            ,           ⟩      %
!
   ⟨            ,          ⟩              ⟨          ,            ⟩                ⟨            ,            ⟩      %
!
  ⟨            ,           ⟩              ⟨            ,            ⟩                ⟨            ,            ⟩  }         %

D × D is called the Cartesian Product for D and consists of all ordered 
pairs that can be obtained from D.    



Sets of Objects versus  
Sets of Ordered Pairs of Objects

A 1-place predicate is interpreted set-theoretically as a set of objects (of 
those objects which satisfy the 1-place predicate in question).!
!
Similarly, a 2-place predicate is interpreted set-theoretically as a set of 
ordered pairs of objects (of those ordered pairs which contain objects that 
satisfy the 2-place predicate in question). !
!
Example: the interpretation of the 2-place predicate Eat(… , …) is the set 
of ordered pairs of objects such that the first object in the pair eats the 
second object in the pair. !



The set D × D is the set of all 9 ordered pairs, as follows:!
!
 { ⟨            ,            ⟩           ⟨            ,            ⟩                 ⟨            ,           ⟩      %
!
   ⟨            ,          ⟩              ⟨          ,            ⟩                ⟨            ,            ⟩      %
!
  ⟨            ,           ⟩              ⟨            ,            ⟩                ⟨            ,            ⟩  }         %

The interpretation I assigns a subset of D × D to each 2-place predicate symbol.

Illustration

 Example:  I(Eat) = { ⟨           ,        ⟩ , ⟨           ,           ⟩ }



Truth for Formulas Containing 
Constant Symbols and Predicates 
The rough idea is that e.g. the formula  Eat(a, b) is true whenever the 
object that corresponds to the constant symbols a and the object that 
corresponds to the constant symbol b form an ordered pair that is in set 
of ordered pairs that correspond to the 2-place predicate Eat.

Let P2 be a 2-place predicate symbol and let c1  and c2 be constant symbols. !
We have:!
!
! M ⊨P2(c1, c2)  iff  ⟨I(c1), (I(c2) ⟩ ∈ I(P2)                         Recall: M is ⟨D, I, g⟩!
!
! M ⊭P2(c1, c1)  iff  ⟨I(c1), (I(c2) ⟩ ∉ I(P2)   



Assessing the Truth of Formulas with 
Constants and Predicate Symbols

I(a) =                       I(b) =                     I(c) =                       

                   I(Eat) = { ⟨           ,        ⟩ , ⟨           ,           ⟩ }

I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

M ⊨ A(b) !
M ⊨ Eat(c, a)  !
M ⊭ Eat(a, b) 

because   I(b) ∈ I(A)%
 because  ⟨ I(c), I(a) ⟩ ∈  I(Eat)           
because  ⟨ I(a), I(b) ⟩ ∉  I(Eat) 


