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Week 7 — Wednesday Class - Syntax and Semantics of Predicate Logic

The Universal Quantifier The Existential Quantifier

∃x∀x



Linguistic 
ingredient

Interpretation 
function I

Value of the 
interpretation 

function

constant 
symbol c  I(c) one object

1-place 
predicate 
symbol P

I(P) set of objects

2-place 
predicate 
symbol R

I(R) set of ordered pairs 
of objects

Summary from Monday (1):  
Interpretation of Constants and Predicate Symbols



Illustration: Interpretation of 
Constants and Predicate Symbols

I(a) =                       I(b) =                     I(c) =                       

                   I(Eat) = { ⟨           ,        ⟩ , ⟨           ,           ⟩ }

I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

This is just one way to 
define I. There are many other 

possibilities, of course. 



   ⟨D, I, g⟩ ⊨ R(c1, c2)  iff  ⟨I(c1), I(c2)⟩ ∈ I(R)

   ⟨D, I, g⟩ ⊨ P(c)  iff  I(c) ∈ I(P)       

Summary from Monday (2):  Truth Conditions for 
Formulas with Constant and Predicate Symbols

 M ⊨ φ       iff           φ is true in (relative to) model M.

A model M is a tuple ⟨D, I, g⟩ where!
 ! - D is the domain, i.e. D is a non-empty set of objects!
! - I is an interpretation function where!
!      I assigns to every constant symbol an object in D!
!      I assigns to a 1-place predicate symbol a set of objects!
!      I assigns to a 2-place predicate symbol a set of ordered pairs!
! - g is the assignment function for variables [to discuss today]

Definition of 
truth conditions for 

simple formulas



Illustration: Truth Conditions for Formulas 
with Constant and Predicate Symbols

I(a) =                       I(b) =                     I(c) =                       

                   I(Eat) = { ⟨           ,        ⟩ , ⟨           ,           ⟩ }

I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

M ⊨ A(b) !
M ⊨ Eat(c, a)  !
M ⊭ Eat(a, b) 

because   I(b) ∈ I(A)"
because  ⟨ I(c), I(a) ⟩ ∈  I(Eat)                
because ⟨ I(a), I(b) ⟩ ∉  I(Eat) 



Three Equivalent Notations —  
     Do Not Get Confused!
 M ⊨ φ       ! ! iff           φ is true in model M

 ⟨D, I, g⟩  ⊨ φ       iff           φ is true in model ⟨D, I, g⟩

The two above are exactly the same, 
because model M is given by ⟨D, I, g⟩

 M  ⊨g φ       ! ! iff           φ is true in model M and assignment g

This third variant is used in the book and it 
highlights the variable assignment g. 



Let’s now Look at  
              Existential Quantification

What’s so special 
about ∃xPx?  
            You’ll see!



The Variable Assignment Function g

A model M is a tuple ⟨D, I, g⟩ where!
 ! - D is the domain, i.e. D is a non-empty set of objects!
! - I is an interpretation function where!
!      I assigns to every constant symbol an object in D!
!      I assigns to 1-place predicate symbol a set of objects!
!      I assigns to 2-place predicate symbol a set of ordered pairs!
! - g assigns to every variable an element of D

The assignment function g does not do anything different from the 
interpretation function for constant symbols. While I assigns to 
every constant symbol an object in D, the assignment function g 
assigns to every variable symbol an object in D. 



Illustration: Interpretation for Constants and 
Assignment Function for Variables Symbols

I(a) =                       I(b) =                     I(c) =                       

This is just one way to 
define g. There are many other 

possibilities, of course. 

g(x) =                       g(y) =                     g(z) =                       



But What’s the Difference Between 
“I” for Constant Symbols and “g” for 
Variables Symbols?  
Don’t They Do Exactly the Same?

What makes the 
variable assignment 

function “g” special is 
the possibility to 

modify it



Modifying the Variable Assignment g into g[x:=d]

Let g be a variable assignment. Let x and y be variable symbols. Let 
d be an object in the domain D. !
! ! ! ! We define g[x:=d] as follows:!
! ! ! ! ! g[x:=d](y) = g(y)!
! ! ! ! ! g[x:=d](x) = d!

In other words, g[x:=d] assigns the object d to the variable symbol x. 
With respect to any other variable,  g and g[x:=d]  are the same, and 
that’s why g[x:=d](y) = g(y). To put it another way, the only (possible) 
difference between g and g[x:=d] is relative to the object they assign to x. !



Linguistic 
ingredient Function I or g Value of I or g

constant 
symbol c  I(c) one object

1-place 
predicate 
symbol P

I(P) set of objects

2-place 
predicate 
symbol R

I(R) set of ordered pairs 
of objects

variable x g(x) one object

variable x  ! ! g[x:=d](x) object d

Updated 
Summary 
Table



Let’s Now See How the Truth of an 
Existentially Quantified Formula is Assessed



⟨D, I, g⟩ ⊨ R(c1, c2)  iff  ⟨I(c1), I(c2) ⟩ ∈ I(R)

⟨D, I, g⟩ ⊨ P(c)  iff  I(c) ∈ I(P)       

Truth Conditions for formulas with Constant and 
Predicate Symbols, and Existential Quantifier

 M ⊨ φ       iff           φ is true in (relative to) model M= ⟨D, I, g⟩

Truth conditions for 
simple formulas

⟨D, I, g⟩ ⊨ ∃xφ iff  there is a d [d∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]     

Truth condition for existentially 
quantified formulas 



I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

M ⊨ ∃x(A(x)) ! iff there is a d [d∈D and ⟨D, I, g[x:=d]⟩ ⊨ A(x)]     "
 iff there is a d [d∈D and  g[x:=d](x) ∈  I(A)] "
 iff there is a d [d∈D and  d ∈  I(A)]  [b/c g[x:=d](x)=d]"

Since it is the case that there is a d such that d ∈ D 
and d ∈  I(A) , we can say that M ⊨ ∃x(A(x)).

First Illustration  of !
⟨D, I, g⟩ ⊨ ∃xφ iff  there is a d [d∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]      



I(a) =                       I(b) =                     I(c) =                       

                   I(Eat) = { ⟨           ,        ⟩ , ⟨           ,           ⟩ }

M ⊨ ∃x(Eat(x, b)) ! iff there is a d [d∈D and ⟨D, I, g[x:=d]⟩⊨Eat(x, b)]     "
 iff there is a d [d∈D and  ⟨g[x:=d](x), I(b)⟩ ∈I(Eat)] "
 iff there is a d [d∈D and  ⟨d, I(b) ⟩ ∈ I(Eat)] "

Second Illustration  of !
⟨D, I, g⟩ ⊨ ∃xφ iff  there is a d [d∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]      

Since it is the case that there is a d such that d∈D and "
⟨d, I(b) ⟩ ∈  I(Eat) , we can say that M ⊨ ∃x(Eat(x, b)).



Is the Existential Quantifier Really 
Necessary? Can we Do Away With it?



The Existential Quantifier Is a 
Hidden Disjunction

Natural Language: Something is red

Predicate logic: ∃x(Red(x))

Without quantifier: Red(a) ∨ Red(b) ∨ Red(c)

Formulas with the 
existential quantifier 
are abbreviations of 
potentially very long 
disjunctions."

To turn the existential 
quantifier into a disjunction, we need 

to suppose that we have constant 
symbols a, b, c for every object. 



But Suppose You Had an Infinite 
Number of Objects

∃x(Red(x))

To turn the existential 
quantifier into a disjunction, we 

would need an infinite number of constant 
symbols a, b, c, … , each for every 

object. 

…….. ……..

……..

Equivalent formula without quantifier: "
Red(a) ∨ Red(b) ∨ Red(c) ∨ ….. ∨….

Absent the 
existential quantifier, we 

would need a formula with an 
infinite number of 

disjuncts!



The Power of Existential 
Quantification

Given an infinite 
domain, an existentially 

quantified formula is 
equivalent to a formula 
consisting of an infinite 

number of disjuncts. 

Formulas of 
predicate logic can only 

contain a finite number of 
disjuncts.  So, existentially 

quantified formulas are a device to 
go beyond this limitation without 

introducing infinite 
disjunctions.

The existential 
quantifier is an 
example of how 
logic makes the 
infinite finite."



Why Should We Care About the Possibility 
of an Infinite Domain of Objects?

Think of arithmetic and the natural 
numbers, which are infinite. If predicate logic 
wants to be a tool to formalize mathematical 

reasoning, predicate logic should be able to talk 
about an infinite domain of objects.



Let’s now Look at  
              Universal Quantification



Truth Conditions for Formulas with Constant 
and Predicate Symbols, and Quantifiers

 M ⊨ φ       iff           φ is true in (relative to) model M= ⟨D, I, g⟩

⟨D, I, g⟩ ⊨ ∃xφ iff  there is d ∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ      

Truth condition for existentially 
quantified formulas 

⟨D, I, g⟩ ⊨ ∀xφ iff  for all d, if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ    

Truth condition for universally 
quantified formulas 



I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

M ⊨∀x(A(x)) ! iff for all d, if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ A(x)   "
 iff for all d, if d ∈ D , then  g[x:=d](x) ∈  I(A) "
 iff for all d, if d ∈ D , then d ∈  I(A) "

Illustration of !
⟨D, I, g⟩ ⊨ ∀xφ iff  for all d, if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ    

Since it is NOT the case that for all d, if d ∈ D , then d ∈  I(A) , 
it follows that M ⊭ ∀x(A(x)).

   D  ={          ,      ,          }        



The Universal Quantifier as a 
Hidden Conjunction

Natural Language: Everything is red

Predicate logic: ∀x(Red(x))

Without quantifier: Red(a) ∧ Red(b) ∧ Red(c)

To turn the universal 
quantifier into a conjunction, we need 

to suppose that we have constant 
symbols a, b, c for every object. 

Formulas with the 
universal quantifier are 
abbreviations of 
potentially very long 
conjunctions."



But Suppose You Had an Infinite 
Number of Objects

Predicate logic: ∀x(Red(x))

To turn the universal 
quantifier into a conjunction, we 

would need an infinite number of constant 
symbols a, b, c, … , each for every 

object. 

…….. ……..

……..

Equivalent formula without quantifier: "
Red(a) ∧ Red(b) ∧ Red(c) ∧ ….. ∧….

Absent the 
universal quantifier, we 

would need a formula with an 
infinite number of 

conjuncts!



The Power of Universal 
Quantification

Given an 
infinite domain, a 

universally quantified formula 
is equivalent to a formula 
consisting of an infinite 
number of conjuncts. 

Formulas of 
predicate logic can only 

contain a finite number of 
conjuncts.  So, universally 

quantified formulas are a device to 
go beyond this limitation without 

introducing infinite 
conjunctions.

The universal 
quantifier is an 
example of how 
logic makes the 
infinite finite."



Let’s now Look at  
              Propositional Connectives



Truth Conditions for Formulas 
Containing Connectives

The connectives in predicate logic do not behave any differently from 
propositional logic. However, the way in which we shall write their truth  
conditions slightly different from what we did in the case of 
propositional logic.

! M ⊨ ¬ φ            iff            it is not the case that M ⊨φ, i.e. M ⊭ φ"
" M ⊨ φ ∧  ψ        iff            M ⊨φ and M ⊨ ψ"
      M ⊨ φ ∨  ψ        iff            M ⊨φ or M ⊨ ψ"
      M ⊨ φ → ψ       iff            M ⊨φ implies M ⊨ ψ"



Assessing the Truth of Formulas with 
Constants, Predicate Symbols, and Connectives

I(a) =                       I(b) =                     I(c) =                       

                   I(Eat) = { ⟨           ,        ⟩ , ⟨           ,           ⟩ }

I(A) ={          ,     }            I(B) = {         ,            }               I(C)={          ,           }  

M ⊨ ¬ A(c) !
M ⊨ Eat(c, a) ∧ Eat(c, b)!
M ⊨ Eat(a, c) → Eat(c, b)!

b/c I(c) ∉ I(A)!
b/c ⟨I(c),I(a)⟩ ∈ I(Eat) and ⟨I(c),I(b)⟩ ∈ I(Eat)   !
b/c ⟨I(a),I(c)⟩ ∈ I(Eat) implies ⟨I(c), I(b)⟩ ∈  I(Eat)"
                            [vacuously b/c antecedent is false]



Summary: Truth Conditions for 
Formulas in Predicate Logic so far

⟨D, I, g⟩ ⊨ ¬ φ            iff    " ⟨D, I, g⟩ ⊭φ"
⟨D, I, g⟩ ⊨ φ ∧  ψ        iff        ⟨D, I, g⟩ ⊨ φ and ⟨D, I, g⟩ ⊨ ψ"
⟨D, I, g⟩ ⊨ φ ∨  ψ        iff        ⟨D, I, g⟩ ⊨ φ or ⟨D, I, g⟩ ⊨ ψ"
⟨D, I, g⟩ ⊨ φ → ψ       iff        ⟨D, I, g⟩ ⊨ φ implies ⟨D, I, g⟩ ⊨ ψ

⟨D, I, g⟩ ⊨ R(c1, c2)     iff       ⟨I(c1), (I(c2) ⟩ ∈ I(R)

 ⟨D, I, g⟩ ⊨ P(c)           iff       I(c) ∈ I(P)       

⟨D, I, g⟩ ⊨ ∃xφ           iff         there is a d [d ∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]    

⟨D, I, g⟩ ⊨ ∀xφ          iff          for all d [if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ]    


