
PHIL 50 - Introduction to Logic
Marcello Di Bello, Stanford University, Spring 2014

Week 7 — Wednesday Class - Syntax and Semantics of Predicate Logic

The Universal Quantifier The Existential Quantifier

∃x∀x

Linguistic
ingredient

Interpretation
function I

Value of the
interpretation

function

constant
symbol c I(c) one object

1-place
predicate
symbol P

I(P) set of objects

2-place
predicate
symbol R

I(R) set of ordered pairs
of objects

Summary from Monday (1):
Interpretation of Constants and Predicate Symbols

Illustration: Interpretation of
Constants and Predicate Symbols

I(a) = I(b) = I(c) =

 I(Eat) = { ⟨ , ⟩ , ⟨ , ⟩ }

I(A) ={ , } I(B) = { , } I(C)={ , }

This is just one way to
define I. There are many other

possibilities, of course.

 ⟨D, I, g⟩ ⊨ R(c1, c2) iff ⟨I(c1), I(c2)⟩ ∈ I(R)

 ⟨D, I, g⟩ ⊨ P(c) iff I(c) ∈ I(P)

Summary from Monday (2): Truth Conditions for
Formulas with Constant and Predicate Symbols

 M ⊨ φ iff φ is true in (relative to) model M.

A model M is a tuple ⟨D, I, g⟩ where!
 ! - D is the domain, i.e. D is a non-empty set of objects!
! - I is an interpretation function where!
! I assigns to every constant symbol an object in D!
! I assigns to a 1-place predicate symbol a set of objects!
! I assigns to a 2-place predicate symbol a set of ordered pairs!
! - g is the assignment function for variables [to discuss today]

Definition of
truth conditions for

simple formulas

Illustration: Truth Conditions for Formulas
with Constant and Predicate Symbols

I(a) = I(b) = I(c) =

 I(Eat) = { ⟨ , ⟩ , ⟨ , ⟩ }

I(A) ={ , } I(B) = { , } I(C)={ , }

M ⊨ A(b) !
M ⊨ Eat(c, a) !
M ⊭ Eat(a, b)

because I(b) ∈ I(A)"
because ⟨ I(c), I(a) ⟩ ∈ I(Eat)
because ⟨ I(a), I(b) ⟩ ∉ I(Eat)

Three Equivalent Notations —
 Do Not Get Confused!
 M ⊨ φ ! ! iff φ is true in model M

 ⟨D, I, g⟩ ⊨ φ iff φ is true in model ⟨D, I, g⟩

The two above are exactly the same,
because model M is given by ⟨D, I, g⟩

 M ⊨g φ ! ! iff φ is true in model M and assignment g

This third variant is used in the book and it
highlights the variable assignment g.

Let’s now Look at
 Existential Quantification

What’s so special
about ∃xPx?
 You’ll see!

The Variable Assignment Function g

A model M is a tuple ⟨D, I, g⟩ where!
 ! - D is the domain, i.e. D is a non-empty set of objects!
! - I is an interpretation function where!
! I assigns to every constant symbol an object in D!
! I assigns to 1-place predicate symbol a set of objects!
! I assigns to 2-place predicate symbol a set of ordered pairs!
! - g assigns to every variable an element of D

The assignment function g does not do anything different from the
interpretation function for constant symbols. While I assigns to
every constant symbol an object in D, the assignment function g
assigns to every variable symbol an object in D.

Illustration: Interpretation for Constants and
Assignment Function for Variables Symbols

I(a) = I(b) = I(c) =

This is just one way to
define g. There are many other

possibilities, of course.

g(x) = g(y) = g(z) =

But What’s the Difference Between
“I” for Constant Symbols and “g” for
Variables Symbols?
Don’t They Do Exactly the Same?

What makes the
variable assignment

function “g” special is
the possibility to

modify it

Modifying the Variable Assignment g into g[x:=d]

Let g be a variable assignment. Let x and y be variable symbols. Let
d be an object in the domain D. !
! ! ! ! We define g[x:=d] as follows:!
! ! ! ! ! g[x:=d](y) = g(y)!
! ! ! ! ! g[x:=d](x) = d!

In other words, g[x:=d] assigns the object d to the variable symbol x.
With respect to any other variable, g and g[x:=d] are the same, and
that’s why g[x:=d](y) = g(y). To put it another way, the only (possible)
difference between g and g[x:=d] is relative to the object they assign to x. !

Linguistic
ingredient Function I or g Value of I or g

constant
symbol c I(c) one object

1-place
predicate
symbol P

I(P) set of objects

2-place
predicate
symbol R

I(R) set of ordered pairs
of objects

variable x g(x) one object

variable x ! ! g[x:=d](x) object d

Updated
Summary
Table

Let’s Now See How the Truth of an
Existentially Quantified Formula is Assessed

⟨D, I, g⟩ ⊨ R(c1, c2) iff ⟨I(c1), I(c2) ⟩ ∈ I(R)

⟨D, I, g⟩ ⊨ P(c) iff I(c) ∈ I(P)

Truth Conditions for formulas with Constant and
Predicate Symbols, and Existential Quantifier

 M ⊨ φ iff φ is true in (relative to) model M= ⟨D, I, g⟩

Truth conditions for
simple formulas

⟨D, I, g⟩ ⊨ ∃xφ iff there is a d [d∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]

Truth condition for existentially
quantified formulas

I(A) ={ , } I(B) = { , } I(C)={ , }

M ⊨ ∃x(A(x)) ! iff there is a d [d∈D and ⟨D, I, g[x:=d]⟩ ⊨ A(x)] "
 iff there is a d [d∈D and g[x:=d](x) ∈ I(A)] "
 iff there is a d [d∈D and d ∈ I(A)] [b/c g[x:=d](x)=d]"

Since it is the case that there is a d such that d ∈ D
and d ∈ I(A) , we can say that M ⊨ ∃x(A(x)).

First Illustration of !
⟨D, I, g⟩ ⊨ ∃xφ iff there is a d [d∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]

I(a) = I(b) = I(c) =

 I(Eat) = { ⟨ , ⟩ , ⟨ , ⟩ }

M ⊨ ∃x(Eat(x, b)) ! iff there is a d [d∈D and ⟨D, I, g[x:=d]⟩⊨Eat(x, b)] "
 iff there is a d [d∈D and ⟨g[x:=d](x), I(b)⟩ ∈I(Eat)] "
 iff there is a d [d∈D and ⟨d, I(b) ⟩ ∈ I(Eat)] "

Second Illustration of !
⟨D, I, g⟩ ⊨ ∃xφ iff there is a d [d∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]

Since it is the case that there is a d such that d∈D and "
⟨d, I(b) ⟩ ∈ I(Eat) , we can say that M ⊨ ∃x(Eat(x, b)).

Is the Existential Quantifier Really
Necessary? Can we Do Away With it?

The Existential Quantifier Is a
Hidden Disjunction

Natural Language: Something is red

Predicate logic: ∃x(Red(x))

Without quantifier: Red(a) ∨ Red(b) ∨ Red(c)

Formulas with the
existential quantifier
are abbreviations of
potentially very long
disjunctions."

To turn the existential
quantifier into a disjunction, we need

to suppose that we have constant
symbols a, b, c for every object.

But Suppose You Had an Infinite
Number of Objects

∃x(Red(x))

To turn the existential
quantifier into a disjunction, we

would need an infinite number of constant
symbols a, b, c, … , each for every

object.

…….. ……..

……..

Equivalent formula without quantifier: "
Red(a) ∨ Red(b) ∨ Red(c) ∨ ….. ∨….

Absent the
existential quantifier, we

would need a formula with an
infinite number of

disjuncts!

The Power of Existential
Quantification

Given an infinite
domain, an existentially

quantified formula is
equivalent to a formula
consisting of an infinite

number of disjuncts.

Formulas of
predicate logic can only

contain a finite number of
disjuncts. So, existentially

quantified formulas are a device to
go beyond this limitation without

introducing infinite
disjunctions.

The existential
quantifier is an
example of how
logic makes the
infinite finite."

Why Should We Care About the Possibility
of an Infinite Domain of Objects?

Think of arithmetic and the natural
numbers, which are infinite. If predicate logic
wants to be a tool to formalize mathematical

reasoning, predicate logic should be able to talk
about an infinite domain of objects.

Let’s now Look at
 Universal Quantification

Truth Conditions for Formulas with Constant
and Predicate Symbols, and Quantifiers

 M ⊨ φ iff φ is true in (relative to) model M= ⟨D, I, g⟩

⟨D, I, g⟩ ⊨ ∃xφ iff there is d ∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ

Truth condition for existentially
quantified formulas

⟨D, I, g⟩ ⊨ ∀xφ iff for all d, if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ

Truth condition for universally
quantified formulas

I(A) ={ , } I(B) = { , } I(C)={ , }

M ⊨∀x(A(x)) ! iff for all d, if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ A(x) "
 iff for all d, if d ∈ D , then g[x:=d](x) ∈ I(A) "
 iff for all d, if d ∈ D , then d ∈ I(A) "

Illustration of !
⟨D, I, g⟩ ⊨ ∀xφ iff for all d, if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ

Since it is NOT the case that for all d, if d ∈ D , then d ∈ I(A) ,
it follows that M ⊭ ∀x(A(x)).

 D ={ , , }

The Universal Quantifier as a
Hidden Conjunction

Natural Language: Everything is red

Predicate logic: ∀x(Red(x))

Without quantifier: Red(a) ∧ Red(b) ∧ Red(c)

To turn the universal
quantifier into a conjunction, we need

to suppose that we have constant
symbols a, b, c for every object.

Formulas with the
universal quantifier are
abbreviations of
potentially very long
conjunctions."

But Suppose You Had an Infinite
Number of Objects

Predicate logic: ∀x(Red(x))

To turn the universal
quantifier into a conjunction, we

would need an infinite number of constant
symbols a, b, c, … , each for every

object.

…….. ……..

……..

Equivalent formula without quantifier: "
Red(a) ∧ Red(b) ∧ Red(c) ∧ ….. ∧….

Absent the
universal quantifier, we

would need a formula with an
infinite number of

conjuncts!

The Power of Universal
Quantification

Given an
infinite domain, a

universally quantified formula
is equivalent to a formula
consisting of an infinite
number of conjuncts.

Formulas of
predicate logic can only

contain a finite number of
conjuncts. So, universally

quantified formulas are a device to
go beyond this limitation without

introducing infinite
conjunctions.

The universal
quantifier is an
example of how
logic makes the
infinite finite."

Let’s now Look at
 Propositional Connectives

Truth Conditions for Formulas
Containing Connectives

The connectives in predicate logic do not behave any differently from
propositional logic. However, the way in which we shall write their truth
conditions slightly different from what we did in the case of
propositional logic.

! M ⊨ ¬ φ iff it is not the case that M ⊨φ, i.e. M ⊭ φ"
" M ⊨ φ ∧ ψ iff M ⊨φ and M ⊨ ψ"
 M ⊨ φ ∨ ψ iff M ⊨φ or M ⊨ ψ"
 M ⊨ φ → ψ iff M ⊨φ implies M ⊨ ψ"

Assessing the Truth of Formulas with
Constants, Predicate Symbols, and Connectives

I(a) = I(b) = I(c) =

 I(Eat) = { ⟨ , ⟩ , ⟨ , ⟩ }

I(A) ={ , } I(B) = { , } I(C)={ , }

M ⊨ ¬ A(c) !
M ⊨ Eat(c, a) ∧ Eat(c, b)!
M ⊨ Eat(a, c) → Eat(c, b)!

b/c I(c) ∉ I(A)!
b/c ⟨I(c),I(a)⟩ ∈ I(Eat) and ⟨I(c),I(b)⟩ ∈ I(Eat) !
b/c ⟨I(a),I(c)⟩ ∈ I(Eat) implies ⟨I(c), I(b)⟩ ∈ I(Eat)"
 [vacuously b/c antecedent is false]

Summary: Truth Conditions for
Formulas in Predicate Logic so far

⟨D, I, g⟩ ⊨ ¬ φ iff " ⟨D, I, g⟩ ⊭φ"
⟨D, I, g⟩ ⊨ φ ∧ ψ iff ⟨D, I, g⟩ ⊨ φ and ⟨D, I, g⟩ ⊨ ψ"
⟨D, I, g⟩ ⊨ φ ∨ ψ iff ⟨D, I, g⟩ ⊨ φ or ⟨D, I, g⟩ ⊨ ψ"
⟨D, I, g⟩ ⊨ φ → ψ iff ⟨D, I, g⟩ ⊨ φ implies ⟨D, I, g⟩ ⊨ ψ

⟨D, I, g⟩ ⊨ R(c1, c2) iff ⟨I(c1), (I(c2) ⟩ ∈ I(R)

 ⟨D, I, g⟩ ⊨ P(c) iff I(c) ∈ I(P)

⟨D, I, g⟩ ⊨ ∃xφ iff there is a d [d ∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]

⟨D, I, g⟩ ⊨ ∀xφ iff for all d [if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ]

