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Identity  =                  

So far our language lacked a symbol for identity. 
Let’s now introduce a symbol for identity.  



What Does “=“ Mean?

⟨D, I, g⟩ ⊨ (c1 = c2)   iff      ⟨I(c1), I(c2)⟩ ∈ I(=)

⟨D, I, g⟩ ⊨ (x = y)    iff       ⟨g(x), g(y)⟩ ∈ I(=)

 I(=) is a set of pairs because 
“=“ is a two-place predicate after all. 

What’s peculiar about I(=) is that each 
pair in the set must consist of the 

same object twice. 

Illustration:!
!
I(=) = {  …!
!
⟨           ,         ⟩ ,   ⟨         ,         ⟩ !
!
 …  }



Illustration

“a”“b”

M ⊨ (c1 = c2)   iff      ⟨I(c1), I(c2)⟩ ∈ I(=)

a=b is true in M because ⟨I(a), I(b)⟩ ∈ I(=)!
!
c=a is false in M because ⟨I(c), I(a)⟩ ∉ I(=)!
!
¬(a=c) is true in M because ⟨I(a), I(c)⟩ ∉ I(=)

Let M be as follows:

I(a)=

I(b)=

“c”

I(c)=



Isn’t Identity Really Uninteresting?
"Roughly speaking, to say of 
two things that they are 
identical is nonsense, and to 
say of one thing that it is 
identical with itself is to say 
nothing at all.” 
!
 Ludwig Wittgenstein, 
Tractatus 5.5303 



Identity Allows Us to Express Some 
Moderately Interesting Things



There Are at Least….

 ∃x∃y¬(x=y)

 ∃x∃y∃z(¬(x=y)∧¬(x=z)∧¬(y=z))

There are at least two objects 

There are at least three objects 



There Are at Most….

There are at most two objects 

There are at most three objects 

 ∀x∀y∀z((x=y)∨(x=z))

 ∀x∀y∀z∀s((x=y)∨(x=z)∨(x=s))



There Are Exactly…

There are at most two objects 

There are at least two objects 

 ∀x∀y∀z((x=y)∨(x=z))

 ∃x∃y¬(x=y)

There are exactly two objects 

There are exactly three objects 

There are at most three objects ∀x∀y∀z∀s((x=y)∨(x=z)∨(x=s))

There are at least three objects ∃x∃y∃z(¬(x=y)∧¬(x=z)∧¬(y=z))



All Is One!

 ∀x∀y(x=y)



Something is 
Everything!

 ∃x∀y(x=y)



Let’s Now Return to Our Beloved 
Derivation Rules for Predicate Logic!



Recall (1): Derivation Rules for the 
Universal Quantifier 

∀xφ(x)!
————∀E!
    φ(t)

   φ(x)!
————∀I!
    ∀xφ(x)

Conventions. (a) Let φ(x) be a placeholder for a formula of predicate 
logic of arbitrary complexity where x occurs free in φ. (b) Let φ(t) be 
the placeholder for a formula of predicate logic of arbitrary complexity, 
where t is a placeholder for a variable symbol or a constant symbol.!

Restriction on ∀I!
!
Variable x cannot occur 
free in any uncanceled 
assumption on which 
φ(x) depends.  



Let’s say you know that!
   (1) x is a triangle;!
   (2) x is isosceles; and!
   (3) for all y, if y is isosceles, !
! ! then y has two equal sides.!

From (2) and (3) it follows that !
   (4) x has two equal sides.!
So, from (1) and (4), we have:                             
! (5) if x is a triangle, ! ! !
! ! then x has two equal sides.!
So, by universal introduction,!
! (6) for all x, if x is a triangle, !
! ! then x has two equal sides.

Misapplication of ∀I

The application of ∀I is 
wrong because x occurs 
free in the uncanceled 
assumption I(x) 

! ! ! ! ! ! [T(x)]1!
! ! ! ! ! —————!               
! ! ! ! [∀y(I(y)→E(y))]3

! ! ! ! ——————— ∀E     !
     [I(x)]2          !   I(x)→E(x)      
———————————— →E!
! ! ! !         E(x)!
                       ——————→I1!
                           T(x)→E(x)                   !
                  ———————— ∀I               !

         !! ! ∀x(T(x)→E(x))    



! ! ! ! ! ! [T(x)]1!
! ! ! ! ! —————!               
! ! ! ! [∀y(I(y)→E(y))]3

! ! ! ! ——————— ∀E     !
     [I(x)]2          !   I(x)→E(x)      
———————————— →E!
! ! ! !         E(x)!
                       ——————→I1!
                           T(x)→E(x)                   !
                  ———————— ∀I               !
         !! ! ∀x(T(x)→E(x))    

The application of ∀I is 
wrong because x occurs 
free in the uncanceled 
assumption I(x) 

! ! ! ! ! ! [T(x)]1!
! ! ! ! ! —————!               
! ! ! ! [∀y(I(y)→E(y))]3!

! ! ! ———————— ∀E     !
     [I(x)]2          !   I(x)→E(x)      
———————————— →E!
! ! ! !         E(x)!
                       ——————→I1!
                           T(x)→E(x) !
! ! ! ! ——————→I2!
               !  I(x)→(T(x)→E(x))!
                  ———————— ∀I               !
     !! ! ∀x(I(x)→(T(x)→E(x)))    

Variable x does not occur free in 
any uncanceled assumption.

INCORRECT!

CORRECT!



! ! ! ! ! ! [T(x)]1!
! ! ! ! ! —————!               
! ! ! ! [∀y(I(y)→E(y))]3!

! ! ! ———————— ∀E     !
     [I(x)]2          !   I(x)→E(x)      
———————————— →E!
! ! ! !         E(x)!
                       ——————→I1!
                           T(x)→E(x) !
! ! ! ! ——————→I2!
               !  I(x)→(T(x)→E(x))!
                  ———————— ∀I               !
     !! ! ∀x(I(x)→(T(x)→E(x)))    

A Clarification: What does the Derivation Establish?

The derivation on this page is 
correct, but we should be clear 
about what it establishes.!
!
! It establishes that!
∀y(I(y)→E(y)) ⊢ ∀x(I(x)→(T(x)→E(x)))  !
!
! It does not establish that!
! ! ⊢  ∀x(I(x)→(T(x)→E(x)))  !

The derivation rests on the 
uncanceled assumption !
! ! ∀y(I(y)→E(y))



And Now the Rules for the 
Existential Quantifier



Recall (2): Derivation Rules for the 
Existential Quantifier 

! φ(t)!
————∃I!
    ∃xφ(x)

                 [φ(x)]i!
                        .!
                        .!
∃xφ(x)           ψ
——————————∃Ei!
                      ψ

Restriction on ∃E:  Variable x 
cannot occur free in ψ and x 
cannot occur free in any 
assumptions in the sub-
derivation of ψ  except for φ(x).



! !                      [¬φ(x)]1!
 ! ! ! !        ————— ∃I     !
     [¬∃x¬φ(x)]2        ∃x¬φ(x)!
      ———————————— →E!
! ! ! !             ⊥!
                      ——————— RAA1!
                               φ(x)!
                      ———————  ∀I!
[¬∀xφ(x)]3               ∀xφ(x)!
———————————— →E               !
                     ⊥             !
           ——————  RAA2!
                ∃x¬φ(x)!
—————————— →I3!
    ¬∀xφ(x) → ∃x¬φ(x)

¬∀xφ(x)    is equivalent to    ∃x¬φ(x)

! !                           [∀xφ(x)]2!
 ! ! ! ! ! ! ————— ∀E     !
                  [¬φ(x)]1          φ(x)!
                —————————  →E!
 [∃x¬φ(x)]3                        ⊥
———————————— ∃E1               !
                     ⊥             !
           ——————  →I2!
                ¬∀xφ(x)!
—————————— →I3!
   ∃x¬φ(x) → ¬∀xφ(x)  



The Transformative Power of Negation (1) 

! ! For any formula φ, the following hold:!
! ! ! ! ∀x¬φ(x)    is equivalent to    ¬∃xφ(x)!
! ! ! ! ¬∀xφ(x)    is equivalent to    ∃x¬φ(x)!

You should represent this pictorially. When negation moves 
from the inside to the outside of a quantifier, or from the 
outside to the inside of a quantifier, the negation changes the 
quantifier. If the quantifier is universal, the passage of negation 
makes the quantifier existential. If the quantifier is existential, 
the passage of negation makes the quantifier universal.!



The Transformative Power of Negation (2) 

From (classical) propositional logic, we have that! ! ! !
! ! ! ! ¬(φ ∧ ψ)    is equivalent to     ¬φ ∨ ¬ψ!
! ! ! ! ¬(φ ∨ ψ)    is equivalent to     ¬φ ∧ ¬ψ!
! ! ! ! ! ¬¬φ     is equivalent to     φ!

You should represent this pictorially. When negation goes 
through a conjunction, it turns the conjunction into a 
disjunction and it negates each of the conjuncts (now turned 
disjuncts). Similarly, when negation goes through a 
disjunction, it turns the disjunction into a conjunction and it 
negates each of the disjuncts (now turned conjuncts)!



The Power of Negation in Action

! Example 1: !! ! ∀x∀y∃z¬φ    !
! ! ! ! ! ! ! is equivalent to   !
! ! ! ! ! ! ! ¬∃x∃y∀zφ!

! Example 2:   ∃x∃y∀z(¬R(x, y) ∨ ¬R(y, z))!
! ! ! ! ! ! ! ! is equivalent to!
! ! ! ! ! ∃x∃y∀z¬(R(x, y) ∧ R(y, z))!
! ! ! ! ! ! ! ! is equivalent to!
! ! ! ! ! ¬∀x∀y∃z(R(x, y) ∧ R(y, z))!



The Power of Negation at a Glance

! ! For any formula φ, the following hold:!
! ! ! ! ∀x¬φ(x)    is equivalent to    ¬∃xφ(x)!
! ! ! ! ¬∀xφ(x)    is equivalent to    ∃x¬φ(x)!

From (classical) propositional logic, we have that! ! ! !
! ! ! ! ¬(φ ∧ ψ)    is equivalent to     ¬φ ∨ ¬ψ!
! ! ! ! ¬(φ ∨ ψ)    is equivalent to     ¬φ ∧ ¬ψ!
! ! ! ! ! ¬¬φ     is equivalent to     φ!

Remember:  There is a connection between ∀ and ∧ 
and a connection between ∃ and ∨



Derivability and  
Logical Consequence



Derivability in Predicate Logic:   ⊢

! ⊢ ψ                   iff !
there is a derivation of ψ in which all assumptions are canceled 

φ1, φ2, …, φk ⊢ ψ       ! iff !
there is a derivation of ψ from uncanceled assumptions φ1, φ2, …, φk

A derivation is a tree-like arrangement of 
formulas which obeys the derivation rules 
for propositional and predicate logic.!



Validity and Logical Consequence

Validity:!
! ! !    ⊨ ψ                   !
! ! ! ! iff !
all models M make ψ true  

Logical Consequence:!
 ! ! φ1, φ2, …, φk ⊨ ψ       
! ! ! ! ! iff !
all models M that make φ1, φ2, 
…, φk  true make also ψ true

Logical consequence is a if-then universally quantified claim:!
! ! ! ! ! ! φ1, φ2, …, φk ⊨ ψ       ! !
! ! ! ! ! ! ! ! ! iff !
for all models M [if M makes φ1, φ2, …, φk  true, !
! ! ! ! !    then M makes ψ true, as well]



! ! !    ⊨ ψ                   !
!

! ! ! ! iff !
!

all models M make ψ true

! ! φ1, φ2, …, φk ⊨ ψ       
! ! ! ! ! iff !
all models M which make !
φ1, φ2, …, φk  true !
make also ψ true

! ! !    ⊢ ψ                   !
! ! ! ! iff !
there is a derivation of ψ in 
which all assumptions are 
canceled 

! ! φ1, φ2, …, φk ⊢ ψ       
! ! ! ! ! iff !
there is a derivation of ψ 
from uncanceled 
assumptions φ1, φ2, …, φk

Syntactic Standpoint Semantic Standpoint



Finite versus Infinite Tasks



! ! ⊢ or  ⊨ How to Establish the Claim?
Finite or 
Infinite 
Task?

φ1, φ2, …, φk ⊢ ψ
construct one derivation of ψ from 

uncanceled assumptions !
φ1, φ2, …, φk

Finite

⊢ ψ construct one derivation of ψ in 
which all assumptions are canceled

Finite

φ1, φ2, …, φk ⊨ ψ 
consider all models that makes true 
φ1, φ2, …, φk  and check whether all 

such models make true ψ as well
Infinite

! ⊨ ψ consider all models and check 
whether they all make true ψ Infinite 



⊬ or ⊭ How to Establish the Claim?
Finite or 
Infinite 
Task?

φ1, φ2, …, φk ⊬ ψ
consider all derivations and check 

that no one establishes ψ from!
uncanceled assumptions φ1, φ2, …, φk

Infinite

⊬ ψ consider all derivations and check 
that no one establishes ψ 

Infinite

φ1, φ2, …, φk⊭ ψ 
construct one model that makes true 
φ1, φ2, …, φk  and that does not make 

true ψ
Finite

! ⊭ ψ construct one model that does not 
make true ψ Finite 



Soundness and Completeness



The Equivalence of ⊢ and ⊨ in 
Predicate Logic

φ1, φ2, …, φk ⊢ ψ

φ1, φ2, …, φk ⊨ ψ

⇘ ⇖ COMPLETENESSSOUNDNESS

You will have to take a more advanced logic course !
(e.g. PHIL 151) to see how the proof goes.



The completeness of  
Predicate Logic  was 

proven by Gödel in 1929

Leon Henkin from UC, 
Berkeley simplified the proof 

of completeness in 1947



φ1, φ2, …, φk ⊢ ψ
construct one derivation 

of ψ from uncanceled 
assumptions !
φ1, φ2, …, φk

Syntactic 
Standpoint !

!
Finite Task

Completeness ⇑         ⇓ Soundness 

φ1, φ2, …, φk ⊨ ψ 
consider all models that 
makes true φ1, φ2, …, φk  

and check whether  all 
such models make true ψ

Semantic Standpont !
!

Infinite Task


