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Week 8 — Monday Class - Validity and Derivations in Predicate Logic

Proclus Gerard GentzenEuclid’s proposition I.32



Recall (1) — The Notion of a Model

A model M consists of !
! - a domain D of objects;!
! - an interpretation function I which!
! ! ! assigns constant symbols to objects!
! ! ! assigns 1-place predicate symbols to sets of objects !
! ! ! assigns 2-place predicate symbols to sets of pairs of objects !
! - an assignment g which assigns variable symbols to objects 

More informally, we could say that a model describes !
! - which objects/individuals exist in a domain of discourse!
! - how words connect up to those objects/individuals



Recall (2) — Truth in a Model: ⟨D, I, g⟩ ⊨ φ  
          (or equivalently M ⊨ φ)

⟨D, I, g⟩ ⊨ ¬ φ            iff    " ⟨D, I, g⟩ ⊭φ"
⟨D, I, g⟩ ⊨ φ ∧  ψ        iff        ⟨D, I, g⟩ ⊨ φ and ⟨D, I, g⟩ ⊨ ψ"
⟨D, I, g⟩ ⊨ φ ∨  ψ        iff        ⟨D, I, g⟩ ⊨ φ or ⟨D, I, g⟩ ⊨ ψ"
⟨D, I, g⟩ ⊨ φ → ψ       iff        ⟨D, I, g⟩ ⊨ φ implies ⟨D, I, g⟩ ⊨ ψ

⟨D, I, g⟩ ⊨ R(c1, c2)     iff       ⟨I(c1), (I(c2) ⟩ ∈ I(R)

 ⟨D, I, g⟩ ⊨ P(c)           iff       I(c) ∈ I(P)       

⟨D, I, g⟩ ⊨ ∀xφ          iff        for all d [if d ∈ D, then ⟨D, I, g[x:=d]⟩ ⊨ φ]    

⟨D, I, g⟩ ⊨ ∃xφ           iff        there is a d [d ∈ D and ⟨D, I, g[x:=d]⟩ ⊨ φ]    



A Remark about Truth in a Model

 Consider the simplest case!
!
⟨D, I, g⟩ ⊨ P(c)           iff       I(c) ∈ I(P)       

What the above iff-claim says is that!
!
the formula P(c)  is true in model ⟨D, I, g⟩       iff       !
! the object corresponding to c belongs to the set corresponding to P 

Is it a model-independent fact whether the object corresponding to c 
belongs to the set corresponding to P? No. It depends on how we 
interpret the linguistic items c and P. So, truth here has to do with the 
relation between language and domain D. No language, no truth. 



Intuitively, we would 
say that “the cat is on 
the mat” is TRUE 
relative to the situation 
depicted above.

Intuitively, we would 
say that “the cat is on 
the mat” is FALSE 
relative to the situation 
depicted above.

The notion of truth in a 
model, however, 
behaves differently. We 
first need to define 
what “cat”, “mat” and 
“on” refer to, and once 
we have done so, we 
can check whether “the 
cat is on the mat” is 
true (relative to our 
model) or not. 

According to the notion of truth in a model, the truth of a sentence 
crucially depends on the meaning we assign to the words we use. More 
generally, we can say that finding the truth is not only about finding out 
what the world is like, but mostly about finding out what words mean. 

The Importance of Finding out What Words Mean



From Truth in a Model………  
………to Truth in ALL Models



Two Semantic Notions: 
Truth in a Model and Validity

Truth in a model!
!
M ⊨ φ            iff    " model M makes φ true, where M=⟨D, I, g⟩

Validity!
  !
   ⊨ φ            iff    "for all models M, it holds that M ⊨ φ 



Example of a Valid Formula
Claim:   ⊨ ∀x(P(x) ∨ ¬P(x))

Proof of the claim:  Consider an arbitrary model M. We want to show 
that M ⊨ ∀x(P(x) ∨ ¬P(x)). By definition we have that!
! ⟨D, I, g⟩ ⊨ ∀x(P(x) ∨ ¬P(x))      !
 ! ! iff   for all d, if d∈D, then ⟨D, I, g[x:=d]⟩ ⊨ P(x) ∨ ¬P(x)!
! ! iff   for all d, if d∈D, then ⟨D, I, g[x:=d]⟩ ⊨ P(x) or ⟨D, I, g[x:=d]⟩ ⊨  ¬P(x)!
! ! iff   for all d, if d∈D, then ⟨D, I, g[x:=d]⟩ ⊨ P(x) or ⟨D, I, g[x:=d]⟩ ⊭  P(x)!
! ! iff   for all d, if d∈D, then g[x:=d](x)∈I(P) or g[x:=d](x)∉ I(P)!
! ! iff   for all d, if d∈D, then d∈I(P) or d∉ I(P)!
It holds that [for all d, if d∈D, then d∈I(P) or d∉ I(P)], because every 
object is either in a (non-fuzzy) set or it is not. So, M ⊨∀x(P(x)∨¬P(x)). Since 
M was arbitrary, it follows that for all M, M ⊨∀x(P(x)∨¬P(x)).  !
Hence, ⊨ ∀x(P(x) ∨ ¬P(x)).



The proof that a formula 
is valid often rests on using an 

arbitrary model M. You might be puzzled by 
the use of “arbitrary” items in your proofs, and you 

might wonder what such things look like. What is an 
arbitrary object, after all? Hopefully, these doubts 

will be (partly) cleared up today as we 
discuss the rule of universal 

introduction. 



Example of an Invalid Formula

Claim:   ⊭ ∀x(P(x)) ∨ ∀x¬(P(x))

Proof of the claim:  To show that a formula is not valid, it suffices to 
construct one model M which makes the formula false. To this end, let 
D={☐, △} and let I(P)={☐}. We should check that for M thus defined, !
M ⊭ ∀x(P(x)) ∨ ∀x¬(P(x)). By definition we have that !
! ! ! ! !            M ⊨ ∀x(P(x)) ∨ ∀x¬((P(x))      !
 ! ! ! ! ! ! ! ! ! ! iff   !
    [for all d, if d∈D, then d∈I(P)] or [for all d’, if d’∈D, then d’∉ I(P)]      (*)!
However, we have defined our model M such that !
    [there is a d, d∈D and d∉I(P)] and [there is a d’, d’∈D and d’∈ I(P)]  (**)!
Now, (**) is the negation of (*), so M ⊭ ∀x(P(x)) ∨ ∀x¬(P(x)).!
Hence, ⊭ ∀x(P(x)) ∨ ∀x¬(P(x)). !



Mind the Difference…

 ⊨ ∀x(P(x) ∨ ¬P(x))   ⊭ ∀x(P(x)) ∨ ∀x¬(P(x))

It is always true 
that everybody is 

either American or is 
not American. 

It is 
NOT always true 

that either everybody is 
American or everybody 

is not American. 

While the difference might not be completely clear in natural 
language sentences, it is very clear in predicate logic. 



Establishing Validity and Invalidity

To show that a formula is valid, one should show 
that the formula is true in all possible models. 
Since one cannot go through all possible models 
(which could be infinite in number), the only 
method here is to consider an arbitrary model. 

To show that a formula is invalid, one should only 
show that there is one model M which makes the 
formula false. To this end, one should construct a 
model that falsifies the formula by defining a 
domain D and an interpretation function I.

Construct one 
(counter)model

Consider all 
models or an 

arbitrary model



Two Standpoints

Semantic Standpoint: 
Truth and validity!

Syntactic Standpoint: 
Derivability



From Validity to Derivability 

(Semantic) Validity!
    ⊨ φ            iff    " " for all models M, it holds that M ⊨ φ 

(Syntactic) Derivability!
    ⊢ φ            iff     " there is a derivation of φ from no assumptions

You are familiar with the the symbols  ⊨ and ⊢ 
from propositional logic. The novelty now is that 
we are dealing with the validity and derivability 
of formulas of predicate logic, and not simply of 
formulas of propositional logic. 



Propositional logic:!
!
Validity!
    ⊨ φ            iff    " " for all valuations V, it holds that V ⊨ φ "
!
Derivability!
    ⊢ φ            iff      " there is a derivation of φ from no assumptions 
using the rules of derivation for propositional logic.

Predicate logic:!
!
Validity!
    ⊨ φ            iff    " " for all models M, it holds that M ⊨ φ "
!
Derivability!
    ⊢ φ            iff     " there is a derivation of φ from no assumptions 
using the rules of derivation for predicate logic.



Derivation Rules for Predicate Logic

The derivation rules 
for predicate logic include 

the derivation rules for 
propositional logic!

(recall week 3 of the course)

The derivation rules 
for predicate logic include

—in addition—four 
derivation rules that are 
specific to the existential 

and the universal 
quantifier

+



Some Preliminary Notions (1) 
Free versus Bound Variables
A variable x occurs free in a formula whenever x does not occur within 
the scope of the quantifier ∀x or ∃x. "
 " Examples: "
" " x occurs free in P(x) !
! ! both x and y occur free in R(x, y)!
! ! x occurs free in ∀y(R(x, y)) although y does not occur free

A variable x occurs bound in a formula whenever x does occur within 
the scope of the quantifier ∀x or ∃x."
" Examples: "
" " x occurs bound in ∀x(P(x)) !
! ! both x and y occur bound in ∀x(∀y(R(x, y)))!
! ! y occurs bound in ∀y(R(x, y)) although x occurs free 



Some Preliminary Notions (2) 
The Scope of a Quantifier
The scope of a quantifier is the (sub)formula which begins with the 
open bracket `(‘ that immediately follows the quantifier and which 
ends when the bracket is closed by `)’.

Examples: "
" " the scope of ∀x in ∀x(P(x)) is the formula P(x)!
! ! the scope of ∀x in ∀x(∀y(R(x, y))) is the formula ∀y(R(x, y))!
! ! the scope of ∀y in ∀y(R(x, y)) is the formula R(x, y)!
! ! the scope of ∀x in ∀x(R(x, y)) ∧ P(x) is the formula R(x, y)



So Let’s See the Derivation Rules 
That Are Specific to Predicate Logic



Derivation Rules for the Universal Quantifier 

∀xφ(x)"
————∀E"
    φ(t)

   φ(x)!
————∀I"
    ∀xφ(x)

Conventions. (a) Let φ(x) be a placeholder for a formula of predicate 
logic of arbitrary complexity where x occurs free in φ. (b) Let φ(t) be 
the placeholder for a formula of predicate logic of arbitrary complexity, 
where t is a placeholder for a variable symbol or a constant symbol.!

Restriction on ∀I"
!
Variable x cannot occur 
free in any uncanceled 
assumption on which 
φ(x) depends.  



The Rule of Universal Elimination



∀xφ(x)"
————∀E"
    φ(t)

Illustration:  Suppose I have a derivation for the claim 
that every politician is corrupt, i.e. ∀x(P(x)→C(x)). Rule 
∀E allows us to derive a claim about a specific 
individual, e.g. obama.

∀x(P(x) → C(x))!
———————————∀E"
P(obama) → C(obama)!

[∀x(P(x) → C(x))]*!
———————————∀E"
P(obama) → C(obama)              [P(obama)]*!
—————————————————— →E!
! ! ! ! ! ! C(obama)  

Here is an example of a larger derivation using rule ∀E

NB: The 
assumptions 
marked by * are 
uncanceled. 



And Now the Rule of Universal 
Introduction



   φ(x)"
————∀I"
    ∀xφ(x)

Restriction on ∀I"
!
Variable x cannot occur 
free in any uncanceled 
assumption on which 
φ(x) depends.  

The rough idea behind rule ∀I and its associated 
restriction is that once we manage to show that !
! ! ! x is an φ for some arbitrary x, !
then we have managed to show that !
! ! ! x is φ for all x!
!
More will be said on the importance and role of the 
restriction in the slides to follow.



Let x be an odd number. So, x=2k+1, with k some natural number. !
Now, we want to show that x2 is also odd. We have: "
" " x2  = (2k+1)2"

 " "         = 4k2+4k+1"
" "         = 2(2k2+2k)2+1"
Sine it can be written in this form, x2  is odd. So, if x is odd, x2 is also 
odd. Further, x was arbitrary, so for every odd number x, also x2 is odd.

Odd(x) → Odd(x2) "
——————————— ∀I!
∀x(Odd(x) →Odd(x2))"

This piece of reasoning is 
very powerful because it 
allows us to establish a claim 
that applies to all odd 
numbers just by reasoning 
about one (arbitrary) odd 
number. 

Illustration of the use of ∀I



The Universal Generalization Problem

Rule ∀I allows us to 
derive a universal claim 
of the form ∀xφ(x) from 
a particular, non-
universal claim particular 
of the form φ(x).

But why are we entitled to 
make this reasoning step? 
How can a claim about one 
object turn into a claim about 
all objects? This is what we 
might call the universal 
generalization problem. 

   φ(x)!
————∀I"
    ∀xφ(x)



The Universal Generalization Problem Stated 
by the Neoplatonic Philosopher Proclus

“Mathematicians are used to 
draw what is in a way a double 
conclusion: in fact, when they 

have shown something to hold of 
the given figure, they infer that it 
holds in general, going from the 

particular conclusion to the 
general one” (Proclus 412-485)



Proposition I.32. In ANY 
triangle, the sum of the three 
internal angles of the triangle is 
equal to two right-angles.

Euclid establishes this 
proposition by reasoning 
about a (particular) triangle 
ABC. He shows that ABC’s 
internal angles equal two right 
angles. Then, he draws the 
general conclusion that—for all 
triangles—the internal angles 
are equal to two right angles. 

Euclid’s Proposition I.32

What is the justification for 
the last reasoning step, i.e. the 
generalization to all triangles?



The Intuitive Answer to the 
Universal Generalization Problem

PROBLEM: What is an arbitrary object of a certain type? For 
instance, what is an arbitrary triangle? Are there such things as 
arbitrary objects of a certain type? Are they abstractions or what?

Establishing a conclusion about one particular object 
of a certain type—e.g. Euclid's conclusion about triangle 
ABC—entitles one to draw a conclusion about all objects 
of a certain type—e.g. all triangles—insofar as the 
reasoning was about an arbitrary object of a certain type
—e.g. Euclid’s reasoning was about an arbitrary triangle.



The Formal Answer to the Universal 
Generalization Problem

The intuitive requirement that x be arbitrary is formally encoded by the 
restriction that x cannot occur free in any uncanceled assumptions on 
which φ(x) depends. If x were to occur free in some uncanceled 
assumption, this would mean that x was not arbitrary after all, but that 
additional assumptions about the nature of x had been made. 

   φ(x)!
————∀I"
    ∀xφ(x)

Restriction on ∀I"
!
Variable x cannot occur 
free in any uncanceled 
assumption on which 
φ(x) depends.  


