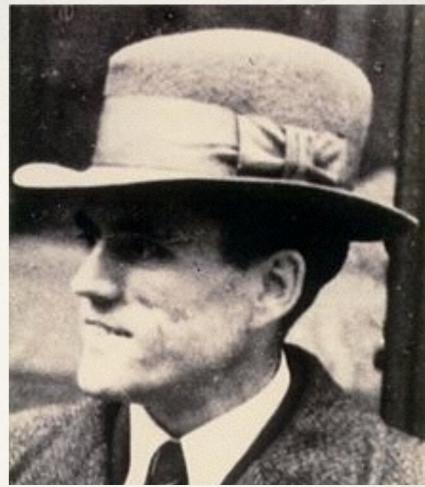


Uhm...



Gerard Gentzen

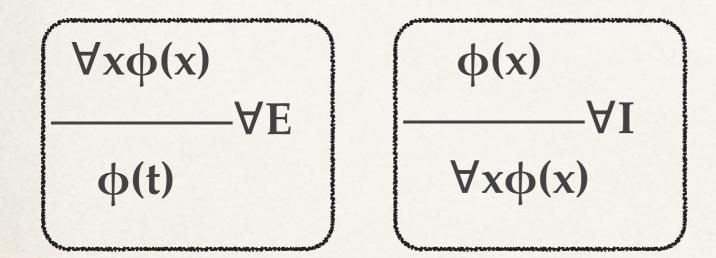
PHIL 50 - Introduction to Logic

Marcello Di Bello, Stanford University, Spring 2014

Week 8 — Wednesday Class - Derivations in Predicate Logic and Identity

Recall (1): Derivation Rules for the Universal Quantifier

Conventions. (a) Let $\phi(x)$ be a placeholder for a formula of predicate logic of arbitrary complexity where x occurs free in ϕ . (b) Let $\phi(t)$ be the placeholder for a formula of predicate logic of arbitrary complexity, where t is a placeholder for a variable symbol or a constant symbol.



Restriction on ∀I

Variable x cannot occur free in any uncanceled assumption on which $\phi(x)$ depends.

Recall (1): The restriction on the Universal Introduction Rule

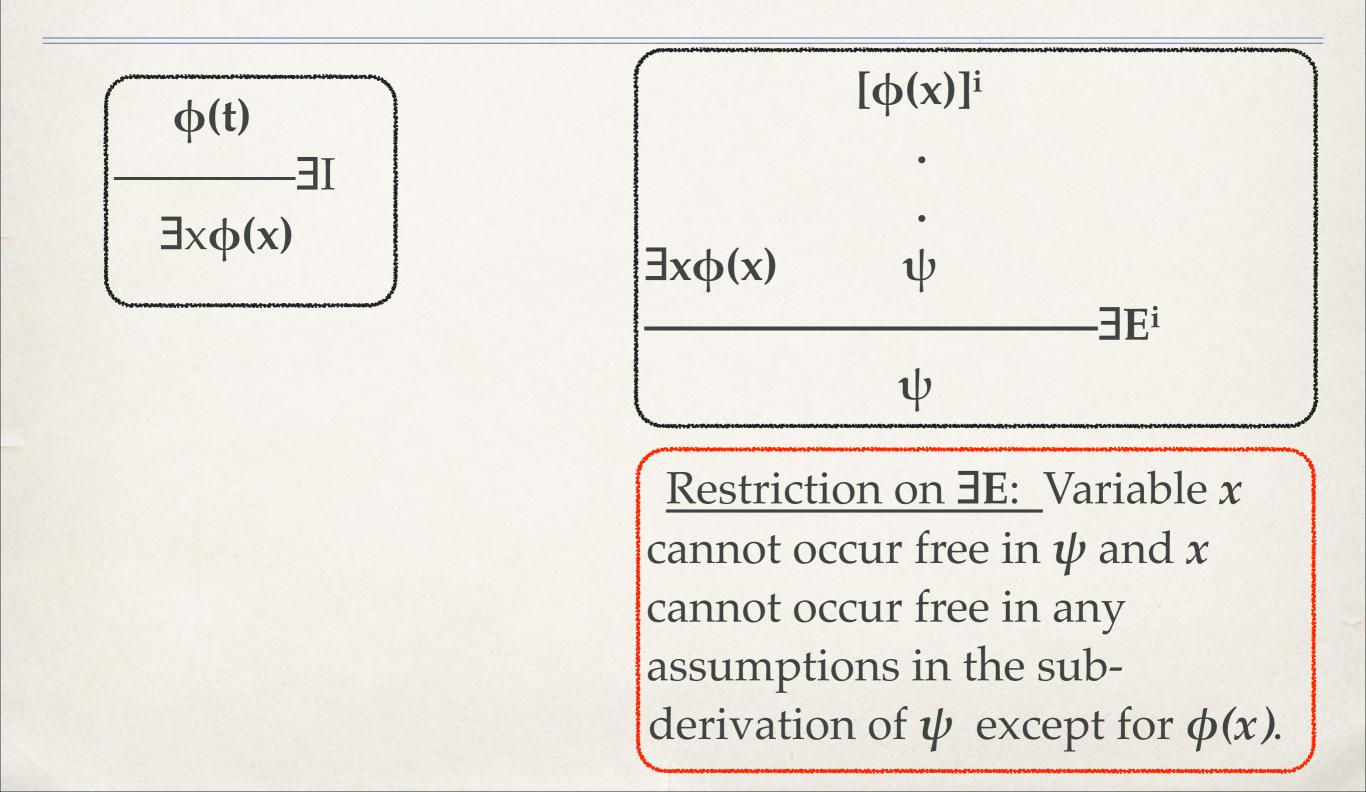
$$\varphi(x) \\ \forall x \varphi(x)$$

Restriction on ∀I

Variable x cannot occur free in any uncanceled assumption on which $\phi(x)$ depends.

The restriction on rule \forall I amounts to the requirement that *x* be **arbitrary**. This requirement is formally encoded by the restriction that *x* **cannot occur free in any uncanceled assumption on which** $\phi(x)$ **depends**. For if *x* were to occur free in some uncanceled assumption, this would mean that *x* was not arbitrary after all, but that additional assumptions about the nature of *x* had been made.

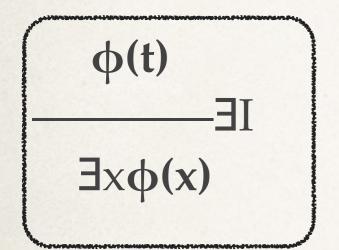
Derivation Rules for the Existential Quantifier



Existential Introduction

Illustration of Existential Introduction

-IE-



If you derive that ϕ holds for some specific *t*, then you can also derive that there is a generic *x* for which ϕ holds.

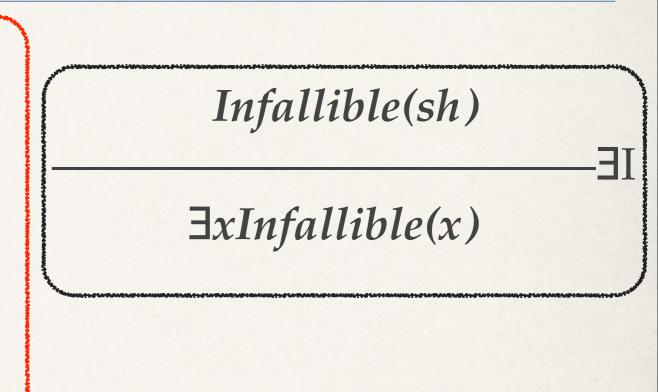
Mountain(half-dome)

 $\exists x Mountain(x)$

If you derive that Half Dome is a mountain, then you can also derive that there is a mountain.

What About Creatures of Fiction?

If you establish that Sherlock Holmes is infallible, does it follow that there is someone infallible? That's strange. Holmes is a creature of fiction and infallible people might not exist for real.



BUT: The claim that $\exists x \phi(x)$ means that there exists an object *x* in your domain such that *x* is ϕ . This does not mean that the object in question exists in reality. All it's been established is that the object exists in your domain, where *the domain can be imaginary or real*.

A Clarification

Existentially quantified formula

 $\exists x P(x)$

Natural language formulations:

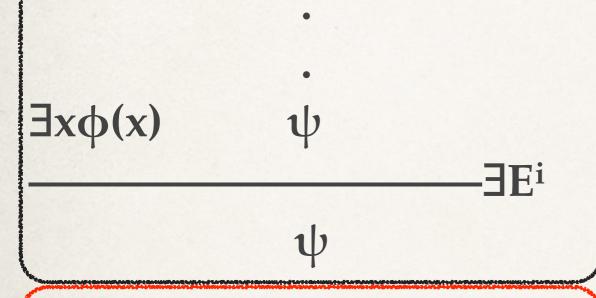
Someone is *P* At least one object is *P*

Quasi formalizations:

There is an **x** that is **P** There exists an **x** that is **P**

Existential Elimination

What's the Point of Existential Elimination



 $[\phi(\mathbf{x})]^{\mathrm{i}}$

Restriction on **JE**:

Variable *x* cannot occur free in ψ and *x* cannot occur free in any assumptions in the sub-derivation of ψ except for $\phi(x)$. Suppose you know that there exists an expert skier, i.e. **∃xS(x)**.

What can you derive from **∃xS(x)**?

Rules **JE** allows you to derive conclusions from existentially quantified claims. How?

Illustration of Good Reasoning Involving Existential Elimination

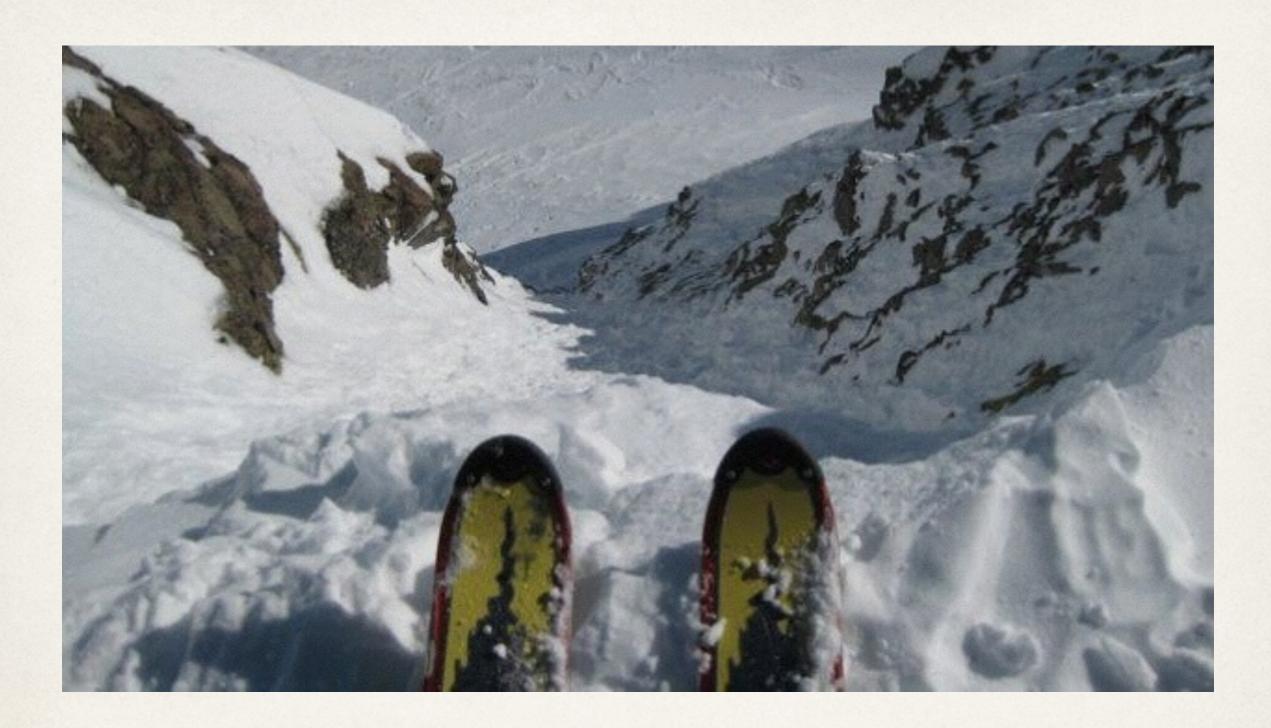
Let's say you know that (a) someone is an expert skier; and (b) every expert skier can ski down a black trail; Now, it seems right to conclude that (c) someone can ski down a black trail

(a)
$$\exists x S(x)$$

(b) $\forall x(S(x) \rightarrow B(x))$

(c) $\exists x B(x)$

We can represent this reasoning as a derivation in predicate logic using **J**E



Squaw Valley for you....

(a)
$$\exists x S(x)$$

(b) $\forall x(S(x) \rightarrow B(x))$
(c) $\exists x B(x)$

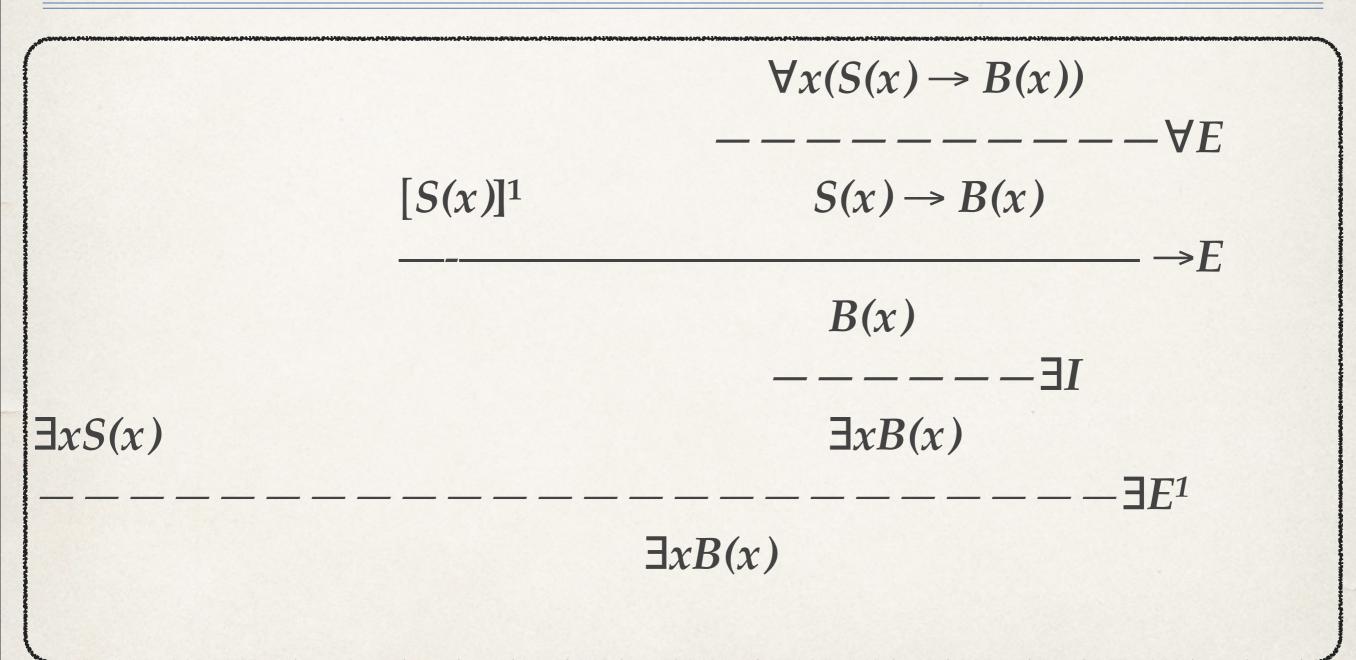


Illustration of Bad Reasoning Involving Existential Elimination

Let's say you know that

(a) someone is an expert skier;

(b*) if *x* is an expert skier, *x* wears a tuxedo while skiing; Now, it is wrong to conclude from (a) and (b*) alone that (c*) someone wears a tuxedo while skiing.

(a) $\exists x S(x)$ (b*) $S(x) \rightarrow T(x)$?? (c^{*}) $\exists x T(x)$

Claim (a) does not specify any particular *x* who is the expert skier, while claim (b*) fixes on a particular *x*. This mismatch between (a) and (b*) makes the reasoning bad.

Generic x versus Specific x

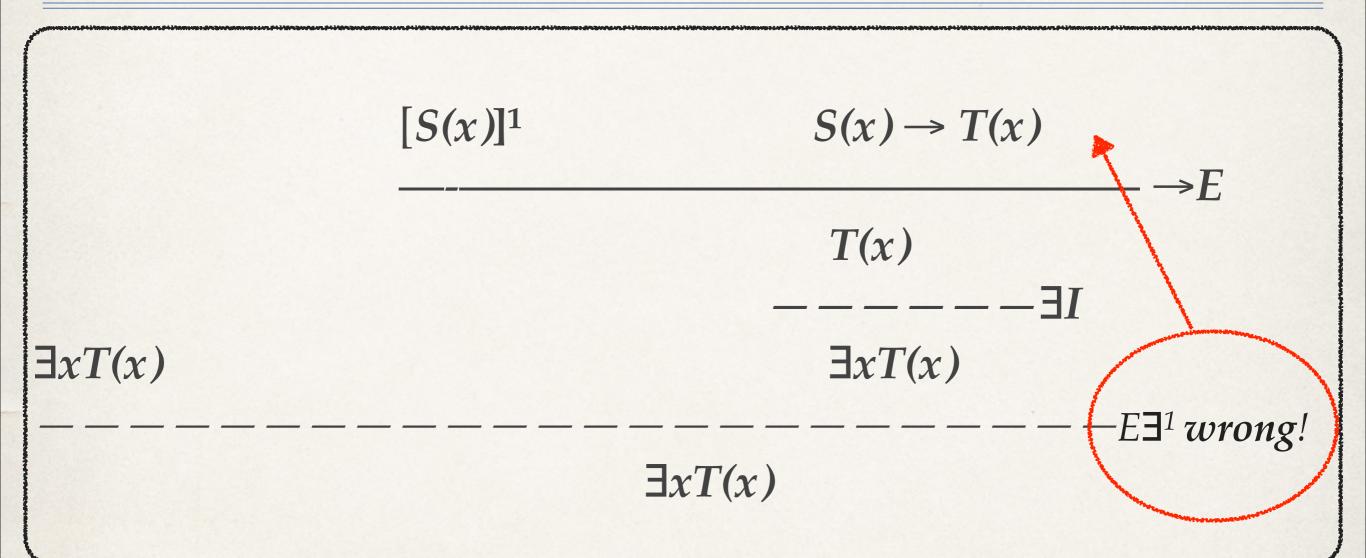
(a) $\exists x S(x)$ (b*) $S(x) \rightarrow T(x)$?? (c*) $\exists x T(x)$

The problem with the reasoning is that claim (a) does not specify any particular x who is the expert skier. Instead, claim(b^{*}) fixes on an particular x who has the peculiar feature that if x is an expert skier, xwears a tuxedo while skying.

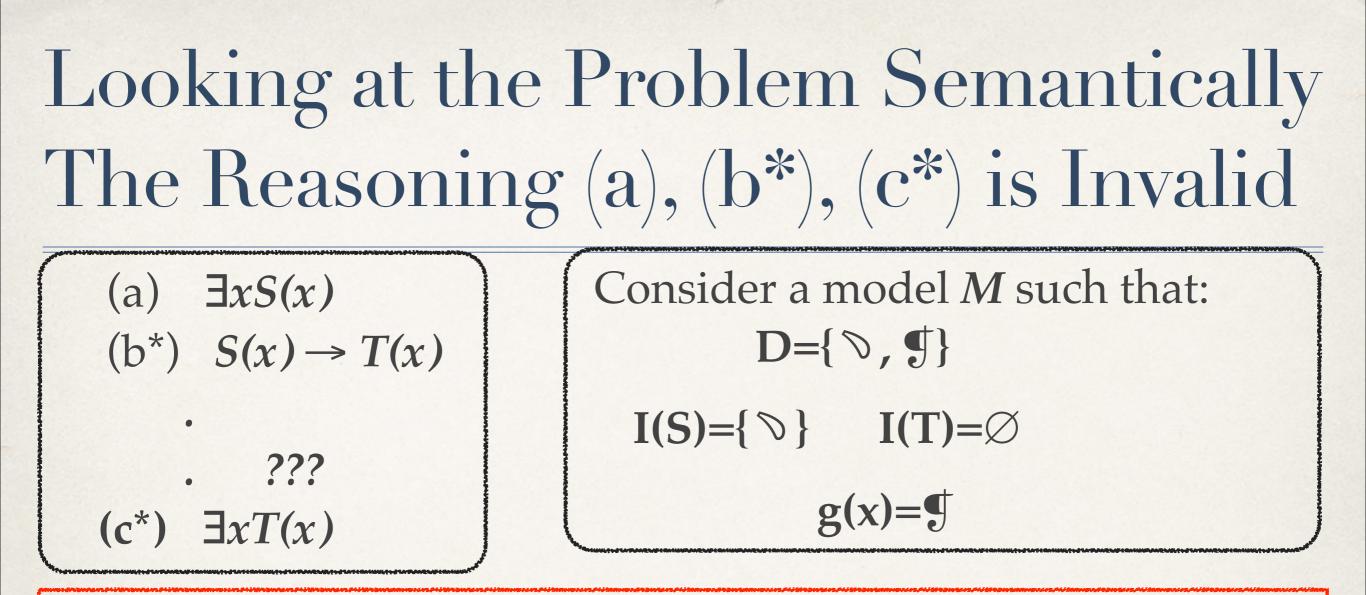
Do not be deceived by the fact that we are using x in booth cases. In the case of $\exists x S(x)$, we are simply saying that there is some x(you can call it y, z,) such that x is S. In the case of $S(x) \rightarrow T(x)$, there is no quantifier, so we are picking a specific x.

A Misapplication of Rule **J***E*

(a) $\exists x S(x)$ (b) $S(x) \rightarrow T(x)$ (c) $\exists x T(x)$



The restriction that x should not occur free in the subderivation of $\exists xT(x)$ except for S(x) is violated.



You can check that *M* makes true (a) because there is an element, namely \Im , which is **S**.

Further, since g(x) is interpreted as \P , (b*) is true vacuously. The antecedent is false because $g(x) \notin I(S)$. So (b*) is true in M.

But (c*) is false in *M* because **I(T)** is empty.

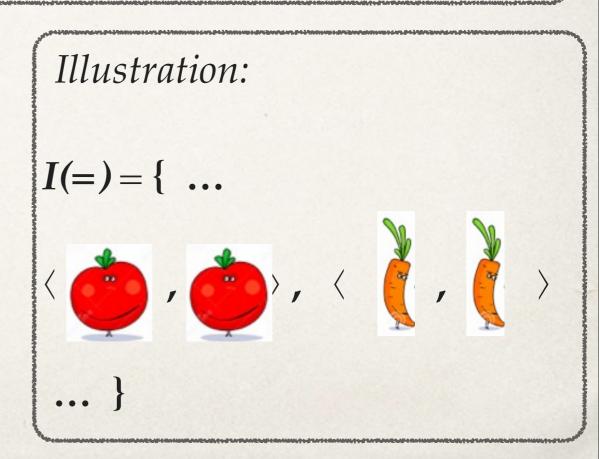
So far our language lacked a symbol for identity. Let's now introduce a symbol for identity.

What Does = Mean?

$$\langle D, I, g \rangle \models (c_1 = c_2) \quad iff \quad \langle I(c_1), I(c_2) \rangle \in I(=)$$

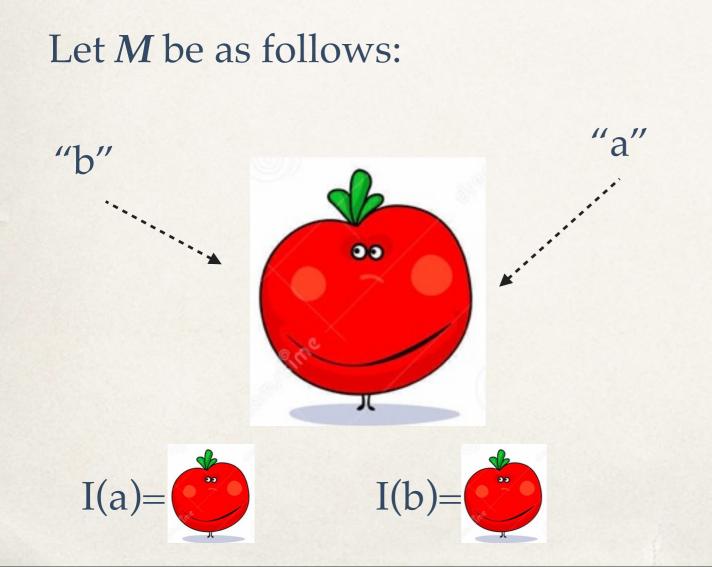
 $\langle D, I, g \rangle \models (x = y) \quad iff \quad \langle g(x), g(y) \rangle \in I(=)$

I(=) is a set of pairs because
"=" is a *two-place predicate* after all.
What's peculiar about I(=) is that each pair in the set must consist of the same object twice.



Illustration

$$\langle D, I, g \rangle \models (c_1 = c_2) \quad iff \quad \langle I(c_1), I(c_2) \rangle \in I(=)$$



a=a is true in M

b=b is true in M

a=b is true in M