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Recall (1): Derivation Rules for the 
Universal Quantifier 

∀xφ(x)"
————∀E"
    φ(t)

   φ(x)!
————∀I"
    ∀xφ(x)

Conventions. (a) Let φ(x) be a placeholder for a formula of predicate 
logic of arbitrary complexity where x occurs free in φ. (b) Let φ(t) be 
the placeholder for a formula of predicate logic of arbitrary complexity, 
where t is a placeholder for a variable symbol or a constant symbol.!

Restriction on ∀I"
!
Variable x cannot occur 
free in any uncanceled 
assumption on which 
φ(x) depends.  



Recall (1):  The restriction on the 
Universal Introduction Rule 

The restriction on rule ∀I amounts to the requirement that x be 
arbitrary. This requirement is formally encoded by the restriction that 
x cannot occur free in any uncanceled assumption on which φ(x) 
depends. For if x were to occur free in some uncanceled assumption, 
this would mean that x was not arbitrary after all, but that additional 
assumptions about the nature of x had been made. 

   φ(x)!
————∀I"
    ∀xφ(x)

Restriction on ∀I"
!
Variable x cannot occur 
free in any uncanceled 
assumption on which 
φ(x) depends.  



Derivation Rules for the Existential Quantifier 

" φ(t)"
————∃I"
    ∃xφ(x)

                 [φ(x)]i"
                        ."
                        ."
∃xφ(x)           ψ
——————————∃Ei"
                      ψ

Restriction on ∃E:  Variable x 
cannot occur free in ψ and x 
cannot occur free in any 
assumptions in the sub-
derivation of ψ  except for φ(x).



Existential Introduction



Illustration of Existential 
Introduction

" φ(t)"
————∃I"
    ∃xφ(x)

If you derive that φ holds for some 
specific t, then you can also derive that 
there is a generic x for which φ holds. 

If you derive that Half Dome  
is a mountain, then you can also 
derive that there is a mountain. 

" Mountain(half-dome)#
————————————∃I"
            ∃xMountain(x)



What About Creatures of Fiction?

If you establish that Sherlock 
Holmes is infallible, does it follow 
that there is someone infallible? 
That’s strange. Holmes is a 
creature of fiction and infallible 
people might not exist for real.

"          Infallible(sh)#
————————————∃I"
            ∃xInfallible(x)

BUT: The claim that ∃xφ(x) means that there exists an object x in your 
domain such that x is φ. This does not mean that the object in question 
exists in reality. All it’s been established is that the object exists in your 
domain, where the domain can be imaginary or real. 



A Clarification

Existentially 
quantified formula !
!
             ∃xP(x)

Natural language formulations:!
!
Someone is P!
At least one object is P#
!
Quasi formalizations:!
!
There is an x that is P!
There exists an x that is P!



Existential Elimination



What’s the Point of Existential 
Elimination
                 [φ(x)]i"

                        ."
                        ."
∃xφ(x)           ψ
——————————∃Ei"
                       ψ

Suppose you know 
that there exists an 
expert skier, i.e. ∃xS(x). !
!
What can you derive 
from ∃xS(x)?!
!
Rules ∃E allows you to 
derive conclusions from 
existentially quantified 
claims. How?!

Restriction on ∃E:  
Variable x cannot occur free 
in ψ and x cannot occur free 
in any assumptions in the 
sub-derivation of ψ  except 
for φ(x).



Illustration of Good Reasoning 
Involving Existential Elimination

Let’s say you know that!
! (a) someone is an expert skier; and!
! (b) every expert skier can ski down a black trail;!
Now, it seems right to conclude that!
! (c) someone can ski down a black trail

" (a)   ∃xS(x)#
# (b)   ∀x(S(x) → B(x))#
! ! ! .!
! ! ! .!
! (c)   ∃xB(x)#

We can represent 
this reasoning as a 

derivation in predicate 
logic using ∃E



Squaw Valley for you….



The Reasoning 
Using Rule ∃E

" (a)   ∃xS(x)#
# (b)   ∀x(S(x) → B(x))#
! (c)   ∃xB(x)#

                                                               ∀x(S(x) → B(x))#
# # # # # # #                       ——————————∀E#
# # # # # # [S(x)]1# # # #     S(x) → B(x)! !
! ! ! ! ! ! —-——————————————— →E#
# # # # # # # # # # # # # B(x)#
# # # # # # # # # # # # ——————∃I#
∃xS(x)                ! ! ! ! ! ! ! ! ∃xB(x)#
————————————————————————∃E1#

! ! ! ! ! ! ! ! ! ! ∃xB(x)#



Illustration of Bad Reasoning 
Involving Existential Elimination

Let’s say you know that!
   (a) someone is an expert skier;!
   (b*) if x is an expert skier, x wears a tuxedo while skiing;!
Now, it is wrong to conclude from (a) and (b*) alone that!

   (c*) someone wears a tuxedo while skiing.

" (a)    ∃xS(x)#
# (b*)   S(x) → T(x)#
            . #
            .      ??#
!        .!
      (c*)   ∃xT(x)#

" Claim (a) does not specify 
any particular x who is the expert 
skier, while claim (b*) fixes on a 
particular x. This mismatch 
between (a) and (b*) makes the 
reasoning bad. 



Generic x versus Specific x

" (a)    ∃xS(x)#
# (b*)   S(x) → T(x)#
            . #
            .      ??#
!        .!
     (c*)   ∃xT(x)#

The problem with the reasoning is 
that claim (a) does not specify any 
particular x who is the expert skier. !
Instead, claim(b*)  fixes on an 
particular x who has the peculiar 
feature that if x is an expert skier, x 
wears a tuxedo while skying. !

Do not be deceived by the fact that we are using x in booth cases. 
In the case of ∃xS(x), we are simply saying that there is some x 
(you can call it y, z,) such that x is S. In the case of  S(x) → T(x), 
there is no quantifier, so we are picking a specific x.



A Misapplication 
of  Rule ∃E

" (a)   ∃xS(x)#
# (b)   S(x) → T(x)#
! (c)   ∃xT(x)#

                                            #
# # # # # # [S(x)]1# # # #     S(x) → T(x)! !
! ! ! ! ! ! —-——————————————— →E#
# # # # # # # # # # # # # T(x)#
# # # # # # # # # # # # ——————∃I#
∃xT(x)                ! ! ! ! ! ! ! ! ∃xT(x)#
————————————————————————!
! ! ! ! ! ! ! ! ! ! ∃xT(x)#

The restriction that x should not occur free in the 
subderivation of ∃xT(x) except for S(x) is violated. 

E∃1 wrong!



Looking at the Problem Semantically 
The Reasoning (a), (b*), (c*) is Invalid
" (a)    ∃xS(x)#
# (b*)   S(x) → T(x)#
            . #
            .      ???#
    (c*)   ∃xT(x)#

Consider a model M such that:!
! ! ! D={﹆, ❡}"

! I(S)={﹆}    ! I(T)=∅ "

   " " " " g(x)=❡

You can check that M makes true (a) because there is an 
element, namely ﹆, which is S.  "

Further, since g(x) is interpreted as ❡, (b*) is true vacuously. 
The antecedent is false because g(x)∉ I(S). So (b*) is true in M. #
!
But (c*) is false in M because I(T) is empty.



Identity  =                  

So far our language lacked a symbol for 
identity. Let’s now introduce a symbol for 

identity.  



What Does = Mean?

⟨D, I, g⟩ ⊨ (c1 = c2)   iff      ⟨I(c1), I(c2) ⟩ ∈ I(=)

⟨D, I, g⟩ ⊨ (x = y)   iff      ⟨g(x), g(y) ⟩ ∈ I(=)

 I(=) is a set of pairs because 
“=“ is a two-place predicate after all. 

What’s peculiar about I(=) is that each 
pair in the set must consist of the 

same object twice. 

Illustration:!
!
I(=) = {  …"
!
⟨           ,         ⟩ ,   ⟨         ,         ⟩ "
!
 …  }



Illustration

“a”“b”

⟨D, I, g⟩ ⊨ (c1 = c2)   iff      ⟨I(c1), I(c2) ⟩ ∈ I(=)

a=a is true in M#
!
b=b is true in M#
!
a=b is true in M

Let M be as follows:

I(a)= I(b)=


