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In this note I want to make two points about the relation between probabil-
ity and logic. The first point is that probability theory needs an underlying
logic, typically classical logic. The axioms of probability theory would not
make sense without a suitable logic underlying them. Second, it is an open
question how to characterize a notion of probabilistic validity that is as sys-
tematically and formally defined as the notion of deductive validity. The
task of defining probabilistic validity is the subject of what we might call
probability logic.

1 PROBABILITY THEORY

We begin with the mathematics of probability. A probability function P is
a function from a set of formulas into the real numbers and it follows the
Kolmogorov Axioms:

NORMALITY: 0 ≤ P (ϕ) ≤ 1, for any formula ϕ;

CERTAINTY: P (>) = 1, with > any logical tautology; and

ADDITIVITY: P (ϕ ∨ ψ) = P (ϕ) + P (ψ), provided ϕ ∧ ψ is a con-
tradiction.

In other words, a probability function assigns to every formula a real number
between 0 and 1. It assigns the value 1 to tautologies. And to the disjunction
of contradictory formulas, it assigns the sum of their probabilities.

Now that we have defined P (ϕ), we can define the conditional probabil-
ity of ϕ given some other formula ψ, as follows:

CONDITIONAL PROBABILITY: P (ϕ|ψ) = P (ϕ∧ψ)
P (ψ) .

The expression P (ϕ|ψ) should be read ‘ϕ conditional on ψ’. For example,
consider the statement ‘the rain is imminent’ and ‘there are dark clouds in
the sky’. It is natural to ask the conditional probability of ‘the rain is im-
minent’ given that ‘there are dark clouds in the sky’, which in symbols reads
P (the rain is imminent|there are dark clouds in the sky).
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Why do we define conditional probability as P (ϕ∧ψ)
P (ψ) ? The conditional

probability of ϕ given ψ is the probability of having both ϕ and ψ divided
by the probability of having ψ. Here ψ plays the role of the assumption that
is taken to be true and against which the probability of ϕ is determined. We
want to know the probability of ϕ assuming that ψ is true. And that amounts
to saying that we want to know the probability of ϕ ∧ ψ assuming that ψ is
true, namely P (ϕ∧ψ)

P (ψ) .
Some lemmas can now be proven, such as:

OVERLAP: P (ϕ ∨ ψ) = [P (ϕ) + P (ψ)]− P (ϕ ∧ ψ)
EQUIVALENCE: If ϕ and ψ are logically equivalent, P (ϕ) = P (ψ)

LOGICAL CONSEQUENCE: If ϕ |= ψ, then P (ϕ) ≤ P (ψ)
NEGATION: P (¬ϕ) = 1− P (ϕ)
TOTAL PROBABILITY: P (ϕ) = P (ϕ|ψ)P (ψ) + P (ϕ|¬ψ)P (¬ψ)

2 THE UNDERLYING LOGIC

It is worth distinguishing probability theory from its underlying logic. Every
formulation of a theory of probability, such as the one above, must rest
on an underlying logic, typically classical logic. Some theorems fail if the
underlying logic is non-classical.

For instance, to prove the negation theorem, one begins with the state-
ment that P (ϕ ∨ ¬ϕ) = 1, which holds because ϕ ∨ ¬ϕ is a classical tautol-
ogy. It then follows by additivity that P (ϕ) + P (¬ϕ) = 1, whence P (¬ϕ) =
1 − P (ϕ). The proof gets off the ground because ϕ ∨ ¬ϕ is a classical tau-
tology. If the underlying logic were intuitionistic, ϕ ∨ ¬ϕ would not be a
tautology, and thus the negation rule would not be a theorem.

Similarly, to prove the theorem of total probability, one relies on P (ϕ) =
P (ϕ ∧ ψ) + P (ϕ ∧ ¬ψ), and since P (ϕ ∧ ψ) = P (ϕ|ψ)P (ψ) and P (ϕ ∧
¬ψ) = P (ϕ|¬ψ)P (¬ψ), the theorem follows immediately. But the equiva-
lence P (ϕ) = P (ϕ ∧ ψ) + P (ϕ ∧ ¬ψ) holds because, first, ϕ and (ϕ ∧ ψ) ∨
(ϕ ∧ ¬ψ) are (classically) logically equivalent, so they must have the same
probability; and second, ϕ∧ψ and ϕ∧¬ψ are inconsistent so the probability
of their sum must be the same as the probability of their disjunction. And
yet, in intuitionistic logic ϕ can be true without neither ϕ ∧ ψ nor ϕ ∧ ¬ψ
being true.
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3 THE MEANING OF PROBABILITY

The mathematical treatment of probability is neutral as to what probability
values express or what they mean. I shall give here a brief overview of
the main interpretations. The most natural interpretation of probability is
the classical interpretation. A statement of it is given by Laplace (1814) as
follows:

The theory of chance consists in reducing all the events of the
same kind to a certain number of cases equally possible, that is
to say, to such as we may be equally undecided about in regard
to their existence, and in determining the number of cases favor-
able to the event whose probability is sought. The ratio of this
number to that of all the cases possible is the measure of this
probability.

What does it mean to say that some cases are equally possible or equally
probable? Laplace takes the notion of equi-possibility or equiprobability
as primitive, or at best he says that two cases are equally probable when
we are ‘equally undecided about their existence.’ In developing this idea,
we can say that two cases are equally probable if the evidence in favour
of (or against) each of them is perfectly balanced. (Incidentally, note the
ambiguity here between ‘we lack evidence for and against proposition A’
and ‘we have equally strong evidence for and against A.’ In both cases, the
evidence is perfectly balanced although for very different reasons: lack of
evidence in one case and equally strong evidence in the other.) We can also
say that two cases are equally probable if they are physically symmetric.
Be that as it may, spelling out the notion of equiprobability requires us to
invoke a principle of indifference, in an epistemological or physical sense.

Moving away from the classical interpretation, some theorists believe
that probabilities are objective features of the world. In particular, some au-
thors think that probabilities apply to classes of events. They equate prob-
abilities to relative frequencies in the case of finite classes of events, or to
limiting relative frequencies in the case of infinite classes of random events,
known as collectives. The frequentist interpretation of probability makes
good sense for events that can be repeated in the long run, but it is at odds
with probabilities assigned to single-case events.

Other theorists hold that probabilities are not objective, but subjective or
more generally epistemic. Loosely put, the idea is that the probability of a
proposition corresponds to an agent’s degrees of belief in a proposition. In an
attempt to spell this out, one can say that degrees of belief in a proposition
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mirror the strength of one’s evidence for that proposition, or more precisely,
they mirror what an ideally rational agent takes to be the strength of one’s
evidence.

We should stop here. We cannot enter into a very difficult debate regard-
ing the foundations and the meaning of probability.

4 BAYES’ RULE

Suppose you formulated a hypothesis H and have some evidence E for it,
and now you want to know the probability of H given E. Bayes’ rule gives
you the answer, as follows:

P (H|E) =
P (E|H)P (H)

P (E)
=

P (E|H)P (H)

P (E|H)P (H) + P (E|¬H)P (¬H)
.

Bayes’ rule allows us to calculate the probability of H given E from three
other items: (i) the probability of H regardless of E; (ii) the probability of
the evidence P (E) which, by the rule of total evidence, equals P (E|H)P (H)+
P (E|¬H)P (¬H); (iii) the likelihood P (E|H), i.e. the probability of E given
H. Probability P (H) measures the probability of H before taking into ac-
count the new piece of evidence E. Probability P (E) is a measure of how
unusual or surprising it is to obtain E. Finally, likelihood P (E|H) is a mea-
sure of how much the hypothesis H “accounts for” or “predicts” E.

(The term ‘likelihood’ is an unfortunate word choice, but one that is now
universally made in the literature. While in common parlance ‘probability’
and ‘likelihood’ are interchangeable terms, within the Bayesian framework
the term ‘likelihood’ designates the probability of the evidence given the
hypothesis, P (E|H), as opposed to the probability of the hypothesis given
the evidence P (H|H).)

5 MEDICAL DIAGNOSIS

Let us now see an example of how to use Bayes’ rule. Suppose you get
tested for a certain disease and the test is positive. What is the probability
that you do in fact have the disease? In order to calculate this probability,
Bayes’ rule requires information about the reliability of the test as well as
information about the base rate of the disease in a reference population. As
for the reliability of the test, let’s suppose the test has a reliability of 0.8.
This means that the test gets it right 80 percent of time. If you have the
disease, the test will come out positive 80 percent of time, and if you do not
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have the disease, the test will come out negative 80 percent of time. This is
what it means for the test to be 80 percent reliable. As for the base rate of
the disease, let’s suppose that the disease in question is had by 15 percent
of the reference population.

What we want to know is, how likely are you to have the disease given
that you tested positive? Let D abbreviate the statement ‘the patient has the
disease’. Let T+ abbreviate the statement ‘the patient tested positive’ and T−

abbreviate the statement ‘the patient tested negative’. What we want to know,
then, is the value of P (D|T+), namely the probability of D conditional on
T+. By Bayes’ theorem, we know that

P (D|T+) =
P (T+|D)P (D)

P (T+|D)P (D) + P (T+|¬D)P (¬D)

To determine the value of P (D|T+), we need the values of P (D) and P (¬D)
and the value of P (T+|D) and P (T+|¬D).

Given the suppositions we made earlier, the disease in question is had by
15 percent of the reference population, so P (D) = 0.15, so P (¬D) = 0.85.
This is the probability that someone in the reference population—picked at
random—has the disease regardless of being tested or not. This is a low
probability, but not a negligible probability of having the disease. And the
question which Bayes’ theorem allows us to answer is, given a base rate
value of 0.15 for D, what is the probability of D while taking into account
the information that that patient tested positive?

(One might object that a patient either has the disease or she does not.
It is either true or false, 1 or 0, that the patient has the disease. One might
conclude that there is no need for probability in this context. Well, this sug-
gests that probability here is a measure of our information about the world,
and in particular it is a measure of how uncertain we are about whether or
not a patient has a certain disease. Objectively, the patient has the disease
or does not have it. But as far as our epistemic, informational, or subjective
standpoint is concerned, we can be more or less sure about the patient’s
condition.)

Next, to determine the value of P (D|T+), we also need the probability
value of P (T+|D) and P (T+|¬D). The test was assumed to have a reliability
of 80 percent. This means that P (T+|D+) = 0.8, i.e. there is an 80 percent
chance that a patient tests positive given that the patient does in fact have
the disease. Further, P (T−|¬D) = 0.8, i.e. there is an 80 percent chance
that a patient tests negative given that the patient does not have the disease.
The latter implies that P (T+|¬D) = 0.2 because P (ϕ) = 1− P (¬ϕ).
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We are now ready to plug these values into the formula for Bayes’ theo-
rem, as follows:

P (D|T+) =
P (T+|D)P (D)

P (T+|D)P (D) + P (T+|¬D)P (¬D)
=

0.8 ∗ 0.15
0.29

=≈ 0.41.

The interesting result here is that, even if the test is reliable 80 percent of the
time, the probability that the patient has in fact the disease is still quite low.
The reason is that the probability of D regardless of the tests result is low
and equals 0.15. The table below shows that by varying the probability of
D we can arrive at different probabilities of D given a positive test holding
fixed the test’s reliability:

P (D) P (¬D) P (T+|D) P (D|T+)

0.15 0.85 0.8 0.41
0.25 0.75 0.8 0.57
0.35 0.65 0.8 0.68
0.45 0.55 0.8 0.76
0.50 0.50 0.8 0.80
0.55 0.45 0.8 0.83
0.65 0.35 0.8 0.88
0.75 0.25 0.8 0.92
0.85 0.15 0.8 0.95

6 PROBABILITY LOGIC

Probability logic offers an account of probabilistic validity, whereas deduc-
tive logic offers an account of deductive validity. Deductive logic gives us a
theory that answers the question:

Which reasoning patterns bring us from truth premises to a true
conclusion?

In the past several weeks we studied the relation of logical consequence
ϕ1, . . . , ϕk |= ψ, where ϕ,ϕ2, . . . , ϕk are the premises and ψ is the conclu-
sion. When the relation ϕ1, . . . , ϕk |= ψ holds, that means that whenever
ϕ,ϕ2, . . . , ϕk are true, then also ψ is true. So, relation |= can be described
as a relation of truth preservation.

The task of probability logic is to identify a relation similar to logical con-
sequence but a relation which holds probabilistically. The task of probability
logic is to identify a relation that holds between highly probable premises
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and a highly probable conclusion. Probability logic should give us a theory
that answers the question:

Which reasoning patterns bring us from highly probable premises
to a highly probable conclusion?

Instead of truth preservation, probability logic should focus on high proba-
bility preservation, i.e. in identifying reasoning patterns that bring us from
highly probable premises to highly probable conclusions (contrast this with
reasoning patterns that brings us from true premises to true conclusions sim-
pliciter). This is by no means an easy task, and unlike deductive logic, there
is no agreed theory of probabilistic validity.

Let us conclude with a contrast between deductive logic and probability
logic. The (deductive) rule of ∧I tells us that from two true premises, say ϕ
and ψ, the conclusion ϕ ∧ ψ follows. There is no doubt that the reasoning
pattern associated with ∧I is deductively valid. More generally, from true
premises ϕ1, ϕ2, . . . , ϕk, the conjunction ϕ1∧ϕ2∧· · ·∧ϕk follows. Can we say
that if the premises ϕ1, ϕ2, . . . , ϕk are highly probable, then the conclusion
ϕ1 ∧ϕ2 ∧ · · · ∧ϕk is also highly probable? The answer is no because of what
we might call the aggregation of risk. Let’s see what this means.

Suppose you have a fair lottery with 1,000 tickets, so the probability
that a ticket, any ticket, loses is very high, namely 999

1,000 . Let Li be the
statement describing the situation in which ticket number i loses. So P (Li)
is very high, for each statement Li. Now, is the probability of the conjunction
L1 ∧ L2 ∧ · · · ∧ L1000 still very high? No, it is not. In fact, the probability of
the conjunction is zero, because we know that at least one ticket must win,
so it cannot possibly be that all tickets lose. What has happened here? We
have:

P (L1) =
999
1,000

P (L1 ∧ L2) =
999
1,000 ×

998
999

P (L1 ∧ L2 ∧ L3) =
999
1,000 ×

998
999 ×

997
998

. . .
P (L1 ∧ L2 ∧ L3 ∧ · · · ∧ L999 ∧ L1000) =

999
1,000 ×

998
999 ×

997
999 × · · · ×

1
2 × 0

As more and more conjuncts are added, the probability of the conjunction
lowers until it becomes zero. Why is that? To see why, let us ask, what is
the probability that ticket number 1 and ticket number 2 both lose? This
is the probability that the ticket number 1 loses, namely 999

1000 , multiplied by
the probability that ticket number 2 loses (taking into account that ticket
number one loses), namely 998

999 . And what is the probability that ticket num-
ber 1, ticket number 2, and ticket number 3 all lose? This is the probability
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that ticket number 1 loses, multiplied by the probability that ticket number
2 loses (taking into account that ticket number 1 loses), again multiplied
by the probability that ticket number 3 loses (taking into account that both
ticket number 1 and ticket number 2 lose). That is, the probability in ques-
tion is 999

1000 ×
998
999 ×

997
988 . More generally, in a fair lottery consisting of 1000

tickets, for a sequence consisting of a k number of tickets, the probability
that all such tickets in the sequence lose is 999

1000 ×
998
999 ×

997
988 × · · · ×

1000−k
1000−k+1 .

This was just an illustration that it is not easy to develop a notion of
probabilistic validity. It is not enough to take deductive validity and turn
it into a probabilistic notion. It is not the case that if a reasoning pattern
is deductively valid, the same pattern will also be probabilistically valid.
There is a divide between deductive validity and probabilistic validity. As of
today, we still lack a well-defined theory of probabilistic validity. If you are
interested in these topics, please have a look at the book by Ernest Adam,
Probability Logic, published by Stanford University Press.
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