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Abstract

This paper presents a study, from a mathematician’s perspective, of the current
ongoing debate as to how to calculate the significance of a DNA profile match in a
“Cold Hit” case, where the match is the result of a search through a DNA database,
and what statistical information about the database identification may be presented
in court as evidence. At present, such evidence may be (though often is not)
excluded from court proceedings in jurisdictions that adhere to the 1923 Frye ruling
that only scientific evidence may be admitted that uses methods on which the
scientific community has reaches a consensus. Much of the legal debate has
centered around the government’s insistence that it present the RMP (random
match probability) in cold hit cases, a position that we argue strongly against.

We use a particular current case as an illustrative example, but the focus of the
paper is the general mathematical issues involved in such cases.

The paper is in part expository, written both to make the mathematical community
more aware of this important legal issue, and to provide lawyers and others in the
legal profession with the necessary background to understand the main statistical
issues involved. We do however present a proposed resolution to the key
disagreement between the two main protagonists in the statistical debate — the
adherents of the procedures recommended in the National Research Council’s
1992 and 1996 reports on DNA profiling evidence, and those who favor the
Bayesian approach advocated by Balding and Donnelly.

United States of America versus Raymond Jenkins

On June 4 1999, police officers in Washington, D.C. found the body of Dennis
Dolinger, aged 51, at his home in Capitol Hill. He had been stabbed multiple
times — at least 25 according to reports — with a screwdriver that penetrated
into the brain.

Dolinger had been a management analyst at the Washington Metropolitan Area
Transit Authority. He had lived on Capitol Hill for 20 years and was active in the
community. In particular, he was a neighborhood politician, having been elected
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ANC 6B12 representative in 1993, and had taken a strong stand against drug
dealing in the area. He had a wide network of friends and colleagues across the
city. He was openly gay and lived with a housemate, whom police did not
consider a suspect.

Police found a blood trail leading from the basement where Dolinger was
discovered to the first- and second-floors of his house and to the front walkway
and sidewalk. Bloody clothing was found in the basement and in a room on the
second floor. Police believed the some of the bloodstains were those of the
murderer, who was cut during the assault. Dolinger’s wallet, containing cash and
credit cards, had been taken, and his diamond ring and gold chain were missing.

The police quickly identified several suspects: Dolinger’s former boyfriend, who
had assaulted Dolinger in the past and had left the D.C. area around the time
police discovered the body, a man who was observed fleeing from Dolinger’s
house but did not call the police, neighborhood drug dealers, including one in
whose murder trial Dolinger was a government witness, neighbors who had
committed acts of violence against Dolinger’s pets, various homeless individuals
who frequently visited Dolinger, and gay men whom Dolinger had met at bars
through Internet dating services.

By far the strongest lead was when a man called Stephen Watson used one of
Dolinger’s credit cards at a hair salon and department store in Alexandria within
fifteen hours of Dolinger’s death. Watson was a drug addict and had a long
criminal record including drug offenses, property offenses, and assaults. Police
spoke with a witness who knew Watson personally and saw him on the day of
the murder in the general vicinity of Dolinger’s home, “appearing nervous and
agitated” with “a cloth wrapped around his hand” wearing a “t-shirt with blood on
it.” Another witness also saw Watson in the general vicinity of Dolinger’s home on
the day of the murder, and noted that Watson had several credit cards with him.

On June 9, police executed a search warrant at Watson’s house in Alexandria,
where they found some personal papers belonging to Dolinger. They also noticed
that Watson, who was present during the search, had a cut on his finger “that
appeared to be several days old and was beginning to heal.” At this point, the
police arrested Watson. When questioned at the police station, Watson  “initially
denied knowing the decedent and using the credit card” but later claimed that “he
found a wallet in a back pack by a bank along side a beige colored tarp and
buckets on King Street” in Alexandria. Based on those facts, the police charged
Watson with felony murder.

In the meantime, the FBI had extracted and analyzed DNA from various blood
samples collected from the crime scene. The Agency’s DNA laboratory
determined the DNA profile of the samples. (Specifically, they determined the
profile at the thirteen “CODIS loci” that they used to generate a “DNA profile” —
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see presently.) When the profile from the blood samples failed to match that of
Watson, the US Attorney’s Office dropped the case against Watson, who was
released from custody.

At that point, the FBI ran the crime scene DNA profile through its database of
DNA profiles of known offenders (a database in the FBI’s CODIS system — see
momentarily) to see if a match could be found, but the search came out negative.

Six months later, in November 1999, the DNA profile of the unknown contributor
of the blood evidence was sent to the Virginia Division of Forensic Science,
where a computer search was carried out comparing the profile against the
101,905 offender profiles in the Virginia DNA databank. This time a match was
found — albeit at only eight of the thirteen CODIS loci, since the Virginia
database listed profiles based on those eight loci only.

The (eight loci) match was with a man listed as Robert P. Garrett. A search of
law enforcement records revealed that Robert P. Garrett was an alias used by
Raymond Anthony Jenkins, who was serving time in prison for second-degree
burglary — a sentence imposed following his arrest in July 1999, a few weeks
after Dolinger was murdered. From that point on, the police investigation focused
only on Jenkins.

On November 18, 1999, police interviewed a witness — a man who was in police
custody at the time with several cased pending against him — who claimed to
know Jenkins. This witness reported that on the day after Dolinger’s death he
had seen Jenkins with several items of jewelry, including a ring with some
diamonds and some gold chains, and more than $1,000 in cash. Jenkins also
appeared to have numerous scratches or cuts to his face, according to
government documents.

Seven days later the police executed a search warrant on Jenkins for blood
samples. The samples were sent to the FBI’s forensic science lab for
comparison. In late December 1999, Jenkins’ blood samples were analyzed and
profiled on the FBI’s thirteen CODIS loci, the eight used by the Virginia
authorities plus five others. According to a police affidavit, the resulting profile
was “positively identified as being the same DNA profile as that of the DNA
profile of the unknown blood evidence that was recovered from the scene of the
homicide.” The FBI analysis identified Jenkins’s blood on a pair of jeans found in
the basement near Dolinger, a shirt found in the upstairs exercise room, a towel
on the basement bathroom rack, the sink stopper in the sink of the same
bathroom and a railing between the first and second floors of the residence.
Based on frequencies estimated from a database of 210 self-reported African-
Americans, the FBI estimated that the probability that a random person selected
from the African-American population would share Jenkins’ profile (the so-called
“random match probability”, of which more presently) is 1 in 26 quintillion. Based



4

on that information, an arrest warrant was issued, and Jenkins was arrested on
January 13, 2000.

At the time of writing this article, in late 2005, the case against Jenkins has yet to
go to trial. The main issue of contention between the government prosecutors
and the public defenders appointed to represent Jenkins is whether the DNA
profile produced by the FBI serves to identify Jenkins as the person who
murdered Dennis Dolinger, and (accordingly) whether the result of the DNA
profiling can be admitted in court as evidence. The question is not one of
biochemistry. All parties involved agree that the laboratory science is sound and
reliable, and that Jenkins’ DNA profile (on the 13 CODIS loci) matches that of
samples taken from the crime scene just after the murder. What is in dispute is
what that match signifies. And that turns out to be a question of mathematics.

Before we look at the mathematical issues, however, we need to familiarize
ourselves with the technique of DNA profiling.

DNA profiling

The DNA molecule comprises two long strands, twisted around each other in the
now familiar double-helix structure, joined together in a rope-ladder-fashion by
chemical building blocks called bases. (The two strands constitute the “ropes” of
the “ladder”, the bonds between the bases its “rungs”.) There are four different
bases, adenine (A), thymine (T), guanine (G), and cytosine (C). The human
genome is made of a sequence of roughly three billion of these base-pairs.
Proceeding along the DNA molecule, the sequence of letters denoting the order
of the bases (a portion might be … AATGGGCATTTTGAC …) provides a
“readout” of the genetic code of the person (or other living entity). It is this
“readout” that provides the basis for DNA profiling.

Using today’s techniques (let alone those used at the time the Jenkins’
investigation was carried out), it would be totally impractical to do a DNA
comparison by determining all three billion letters. What is done instead is to
examine a very small handful of sites of variation.

DNA is arranged into large structural bodies called chromosomes. Humans have
23 pairs of chromosomes which together make up the human genome. One
chromosome in each pair is inherited from the mother and the other from the
father. This means that an individual will have two complete sets of genetic
material. A “gene” is really a location (locus) on a chromosome. Some genes
may have different versions, which are referred to as “alleles.” A pair of
chromosomes have the same loci all the way along their length, but may have
different alleles at some of the loci. Alleles are characterized by their slightly
different base sequences and are distinguished by their different phenotypic
effects. Some of the genes studied in forensic DNA tests have as many as 35



5

different alleles in the population.

Most people share very similar gene sequences, but some regions of DNA
sequence vary from person to person with high frequency. Comparing variation
in these regions allows scientists to answer the question of whether two different
DNA samples come from the same person.

The profiling technique used by the FBI and other law enforcement authorities
depends on the fact that the variability is manifested by differences in the length,
measured by the number of bases or the number of times a given sequence
repeats, between pre-specified locations. This procedure yields two
measurements for each sample for each locus, one for the father’s side and one
for the mother’s side. The length of DNA fragments can be measured precisely.
In comparing two samples at a given locus, if the pair of measurements from one
sample is the same as the pair of measurements from the other, the profiles are
said to match at that locus; otherwise, they are said not to match at that locus. If
the two profiles match at each of the loci examined, the profiles are said to
match. If the profiles fail to match at one or more loci, then the profiles do not
match, and it is virtually certain that the samples do not come from the same
person.

A match does not mean that the two samples must absolutely have come from
the same source; all that can be said is that, so far as the test was able to
determine, the two profiles were identical, but it is possible for more than one
person to have the same profile across several loci. At any given locus, the
percentage of people having DNA fragments of a given length, in terms of base
pairs, is small but not zero. DNA tests gain their power from the conjunction of
matches at each of several loci; it is extremely rare for two samples taken from
unrelated individuals to show such congruence over many loci.

The FBI’s forensic DNA identification system CODIS examines thirteen such
regions in the genome. Sequences in these special regions involve multiple
repetitions of short combinations of letters, such as GATA. Easily detectable
differences between people lie in the number of repeats that occur in both copies
of their DNA in these regions.  For example, at one of these regions a person
might have inherited four repeats (GATAGATAGATAGATA) from their father and
six repeats (GATAGATAGATAGATAGATAGATA) from their mother at the same
location in the genome. Another person might inherit eight repeats
(GATAGATAGATAGATAGATAGATAGATAGATA) from their father and five
repeats (GATAGATAGATAGATAGATA) from their mother.

When two randomly chosen DNA samples match completely in a large number of
regions, such as the 13 used in the FBI’s system, the probability that they could
have come from two unrelated people is virtually zero. This fact makes DNA
identification extremely reliable (when performed correctly). The degree of
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reliability is generally measured by using probability theory to determine the
likelihood of finding a particular profile among a random selection of the
population.

For example, consider a profile based on just three sites. The probability that
someone would match a random DNA sample at any one site is roughly one in
ten (1/10).1 So the probability that someone would match a random sample at
three sites would be about one in a thousand:

1/10 x 1/10 x 1/10 = 1/1,000.

Applying the same probability calculation to all 13 sites used in the FBI’s CODIS
system would mean that the chances of matching a given DNA sample at
random in the population are about one in ten trillion:

(1/10)13 = 1/10,000,000,000,000.

This figure is known as the random match probability (RMP). Since it is
computed using the product rule for multiplying probabilities, it assumes that the
patterns found in two distinct sites are independent. During the early days of
DNA profiling, this was a matter of some considerable debate, but by and large
that issue seems to have died away.

In practice, the actual probabilities vary, depending on several factors, but the
figures calculated above are generally taken to be a fairly reliable indicator of the
likelihood of a random match. That is, the RMP is generally taken as a good
indicator of the rarity of a particular DNA profile in the population at large,
although this interpretation needs to be viewed with care. (For example, identical
twins share almost identical DNA profiles.)

The denominator in the FBI’s claimed figure of 1 in 26 quintillion in the Jenkins
case seems absurdly high. Although I have no solipsistic tendencies, I don’t think
I could claim with that kind of certainty that either you or Raymond Jenkins or the
FBI exists outside my imagination and that I am not merely a brain in a vat. In
fact, even the one in ten trillion figure given by the more widely accepted
calculation is surely several orders of magnitude less than the likelihood of other
errors, such as contamination errors during sample collection or laboratory errors
during the analysis process.

Nevertheless, whatever actual numbers you compute, it is surely the case that a
DNA profile match on all thirteen of the sites used by the FBI is a virtual certain

                                               
1 Profile match probabilities are based on empirical studies of allele frequencies of large numbers
of samples. The figure 1/10 used here is widely regarded as being a good representative figure.
See for example http://www.koshlandscience.org/exhibitdna/crim03.jsp
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identification — provided that the match was arrived at by a process consistent
with the randomness that underpins the RMP. (And there’s the rub. History is
littered with examples of how statistics can mislead, and mislead badly, if the
appropriate populations are not random. A famous case is the landslide victory of
Harry S. Truman in the 1948 Presidential election, when all the opinion polls
showed that his opponent, Thomas Dewey, had a strong lead. The polls were not
conducted with a sufficiently random sample of electors.)

The CODIS system

In 1994, recognizing the growing importance of forensic DNA analysis, Congress
enacted the DNA Identification Act, which authorized the creation of a national
convicted offender DNA database and established the DNA Advisory Board
(DAB) to advise the FBI on the issue. DAB members were appointed by the
director of the FBI from a list of experts nominated by the National Academy of
Sciences and professional forensic science societies.

CODIS, the FBI’s DNA profiling system (the name stands for COmbined DNA
Index System) had been started as a pilot program in 1990. The system blends
computer and DNA technologies to provide a powerful tool for fighting crime. The
CODIS DNA database is comprised of four categories of DNA records:

! Convicted Offenders - DNA identification records of persons convicted of
crimes;

! Forensic - Analyses of DNA samples recovered from crime scenes;
! Unidentified Human Remains - Analyses of DNA samples recovered from

unidentified human remains;
! Relatives of Missing Persons - Analyses of DNA samples voluntarily

contributed from relatives of missing persons.

The CODIS database of convicted offenders currently contains over 2.7 million
records.

The DNA profiles stored in CODIS are based on thirteen specific loci, selected
because they exhibit considerable variation among the population.

CODIS utilizes computer software to automatically search these databases for
matching DNA profiles.

CODIS also maintains a Population file, a database of anonymous DNA profiles
used to determine the statistical significance of a match.

CODIS is not a comprehensive criminal database, but rather a system of
pointers; the database only contains information necessary for making matches.
Profiles stored in CODIS contain a specimen identifier, the sponsoring
laboratory’s identifier, the initials (or name) of DNA personnel associated with the
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analysis, and the actual DNA characteristics. CODIS does not store criminal
history information, case-related information, social security numbers, or dates-
of-birth.

Using DNA profiling

Suppose that, as often occurs, the authorities investigating a crime obtain
evidence that points to a particular individual as the criminal, but fails to identify
the suspect with sufficient certainty to obtain a conviction. If the suspect’s DNA
profile is in the CODIS database, or else a sample is taken and a profile
prepared, it may be compared with a profile taken from a sample collected at the
crime scene. If the two profiles agree on all thirteen loci, then for all practical —
and all legal — purposes, the suspect can be assumed to have been identified
with certainty. The random match probability (one in ten trillion) provides a
reliable estimate of the likelihood that the two profiles came from different
individuals. (The one caveat is that relatives should be eliminated. This is not
always easy, even for close relatives such as siblings; brothers and sisters are
sometimes separated at birth and may not even be aware that they have a
sibling, and official records do not always correspond to reality.)

Of course, all that a DNA match does is identify — within a certain degree of
confidence — an individual whose DNA profile was that same as that of a sample
(or samples) found at the crime scene. In of itself, it does not imply that the
individual committed the crime. Other evidence is required to do that. For
example, if semen taken from the vagina of a woman who was raped and
murdered provides a DNA profile match with a particular individual, then, within
the calculated accuracy of the DNA matching procedure, it may be assumed that
the individual had sex with the woman not long before her death. Other evidence
would be required to conclude that the man raped the woman, and possibly
further evidence still that he subsequently murdered her. A DNA match is just
that: a match of two profiles.

As to the degree of confidence that can be vested in the identification of an
individual by means of a DNA profile match obtained in the above manner, the
issues to be considered are:

! The likelihood of errors in collecting (and labeling) the two samples and
determining the associated DNA profiles

! The likelihood that the profile match is purely coincidental.2

                                               
2 As will be explained later, care is required in interpreting this requirement in terms of exactly
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A likelihood of one in ten trillion attached to the second of these two possibilities
(such as is given by the RMP for a 13-loci match) would clearly imply that the
former possibility is far more likely, since hardly any human procedure can claim
a one in ten trillion fallibility rate. Put differently, if there is no reason to doubt the
accuracy of the sample collections procedures and the laboratory analyses, the
DNA profile identification could surely be viewed with considerable confidence.

There is still some doubt regarding the use of the RMP to obtain a reliable
indicator of an accidental match, computed as it is on the basis of our current
scientific understanding of genetics. The RMP calculation does, after all, require
mathematical independence of the loci — an extremely demanding condition —
in order to be able to apply the product rule. It should be noted that a recent
analysis of the Arizona convicted offender data base (a database that uses the
13 CODIS loci) revealed that among the approximately 65,000 entries listed
there were 144 individuals whose DNA profiles match at 9 loci (including one
match between individuals of different races, one Caucasion, the other African
American), another few who match at 10 loci, one pair that match at 11, and one
pair that match at 12. The 11 and 12 loci matches were siblings, hence not
random. But matches on 9 or 10 loci among a database as small as 65,000
entries cast considerable doubt on figures such as “one in ten trillion” for a match
that extends to just 3 or 4 additional loci.3 4

But a one-in-a-trillion likelihood is massive overkill. Absent any confounding
factors, a figure of one in a million or one in ten million (say) would surely be
enough to determine identity with virtual certainty. Hence, all of the above
cautions notwithstanding, it seems reasonably clear that (relatives aside) a 13-
loci match can be taken as definitive identification — provided that, and this is
absolutely critical to the calculation and use of the RMP, the match is arrived at
by comparing a profile from a sample from the crime scene with a profile taken
from a sample from a suspect who has already been identified by means other
than his or her DNA profile.

But this is not what happened in the Jenkins case. There, Jenkins became a
suspect solely as a result of trawling through a DNA database (two databases, in
fact) until a match was found — the so-called “Cold Hit” process.

Cold Hit searches

                                               
3 The matches may be due to individuals who are fairly closely related. Family relationships are
not always known to the individuals themselves, nor to the authorities, nor even ever recorded.
4 The situation is more subtle than might first appear. When the mathematics is done with care,
the Arizona results are not at variance with what the mathematics predicts. The problem is in how
people interpret the math. I’ll come back to this issue later.



10

In general, a search through a DNA database, carried out to see if a profile can
be found that matches the profile of a given sample — say a sample obtained
from a crime scene — is called a Cold Hit search. A match that results from such
a search would be a “cold hit” because, prior to the match the individual
concerned was not a suspect.

For example, CODIS enables government crime laboratories at a state and local
level to conduct national searches that might reveal, say, that semen deposited
during an unsolved rape in Florida could have come from a known offender from
Virginia.

As in the case where DNA profiling is used to provide identification of an
individual who was already a suspect, the principal question that has to be (or at
least should be) asked after a cold hit search has led to a match (a “hit”) is: Does
the match indicate that the profile in the database belongs to the same person
whose sample formed the basis of the search, or is the match purely
coincidental? At this point, the waters rapidly become very murky.

To illustrate the problems inherent in the Cold Hit procedure, consider the
following analogy. A typical state lottery will have a probability of winning a major
jackpot around 1 in 35,000,000. To any single individual, buying a ticket is clearly
a waste of time. Those odds are effectively nil. But suppose that each week, at
least 35,000,000 people actually do buy a ticket. (This is a realistic example.)
Then every one to three weeks, on average, someone will win. The news
reporters will go out and interview that lucky person. What is special about that
person? Absolutely nothing. The only thing you can say about that individual is
that he or she is the one who had the winning numbers. You can make
absolutely no other conclusion. The 1 in 35,000,000 odds tell you nothing about
any other feature of that person. The fact that there is a winner reflects the fact
that 35,000,000 people bought a ticket — and nothing else.

Compare this to a reporter who hears about a person with a reputation of being
unusually lucky, goes along with them as they buy their ticket, and sits alongside
them as they watch the lottery result announced on TV. Lo and behold, that
person wins. What would you conclude? Most likely, that there has been a
swindle. With odds of 1 in 35,000,000, it’s impossible to conclude anything else
in this situation.

In the first case, the long odds tell you nothing about the winning person, other
than that they won. In the second case, the long odds tell you a lot.

A Cold Hit measured by RMP is like the first case. All it tells you is that there is a
DNA profile match. It does not, in of itself, tell you anything else, and certainly not
that that person is guilty of the crime.
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On the other hand, if an individual is identified as a crime suspect by means
other than a DNA match, then a subsequent DNA match is like the second case.
It tells you a lot. Indeed, assuming the initial identification had a rational, relevant
basis (like a reputation for being lucky in the lottery case), the long RMP odds
against a match could be taken as conclusive. But as with the lottery example, in
order for the long odds to have (any) weight, the initial identification has to be
before the DNA comparison is run (or at least demonstrably independent
thereof). Do the DNA comparison first, and those impressive sounding long odds
may be totally meaningless, simply reflecting the size of the relevant population,
just as in the lottery case.

Not everyone agrees with the above analogy — at least, they do not agree with
the conclusions regarding the inapplicability of the RMP in the case of a cold hit
match. In particular, the prosecution in the Jenkins case have argued
consistently that the RMP remains the only statistic that needs to be presented in
court to provide a metric for the efficacy of a DNA match. The defense in that
case have argued equally consistently that the RMP is so misleading, particularly
for laypersons, that it should not be presented to a jury in court — and in that
case so far it has not.

Of course, in a legal system based on adversarial process, such as ours (the
USA), one would expect the two sides in a case like Jenkins to take such
diametrically opposed positions, particularly given that the case is likely to
establish a significant legal precedent. What makes the situation interesting from
a mathematical point of view is that each side has presented testimony in its
favor from some decidedly well qualified statisticians.

From a legal standpoint, the very existence of a scientific controversy of this
nature may be sufficient to keep the RMP out of the court proceedings, at least in
the District of Columbia and in any of the 17 states that follow a 1923 ruling by a
federal D.C. Court — 293 F. 1013 (D.C. Cir. 1923) — known generally as the
Frye “general acceptance” test. This says that admissible scientific evidence
must be based on a “well-recognized scientific principle or discovery [that is]
sufficiently established to have gained general acceptance in the particular field
to which it belongs”.5 For a scientific theory or technique to be a basis for
                                               
5 The Frye case considered the admissibility of evidence obtained using an early form of lie
detector based on changes in systolic blood pressure. Counsel for defendant, arguing for
admitting the evidence, stated in their brief to the court: “The rule is that the opinions of experts or
skilled witnesses are admissible in evidence in those cases in which the matter of inquiry is such
that inexperienced persons are unlikely to prove capable of forming a correct judgment upon it,
for the reason that the subject-matter so far partakes of a science, art, or trade as to require a
previous habit or experience or study in it, in order to acquire a knowledge of it. When the
question involved does not lie within the range of common experience or common knowledge, but
requires special experience or special knowledge, then the opinions of witnesses skilled in that
particular science, art, or trade to which the question relates are admissible in evidence.” In its
ruling, the court declared: “Numerous cases are cited in support of this rule. Just when a scientific
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courtroom testimony in a Frye state trial, the presiding judge has to determine
from expert testimony that the science has such general acceptance.

Again, in a 1999 case (Proctor v. United States, 728 A.2d 1246, 1249), the D.C.
Court acknowledged the dangers of presenting a layperson jury with expert
testimony based on principles that have not been generally accepted, given the
deference jurors naturally apply to experts: “Because of the authoritative quality
which surrounds expert testimony, courts must reject testimony which might be
given undue deference by jurors and which could thereby usurp the truthseeking
function of the jury.”

In another case, Porter v. United States (618 A.2d 619, D.C. 1992),6 referring to
statistical evidence, the Court opined: “It is almost certain that jurors would
simply ‘jump’ to the bottom line numbers without giving any meaningful
consideration to any dispute over the principles which underlie the methodology
used to generate those numbers. To permit the fancy of jurors to operate in this
manner is the antithesis of ‘due process’.’’

NRC I and NRC II

In 1989, eager to make use of the newly emerging technology of DNA profiling
for the identification of suspects in a criminal case, including cold hit
identifications, the FBI urged the National Research Council to carry out a study
of the issue. The NRC formed the Committee on DNA Technology in Forensic
Science, which issued its report in 1992. Titled DNA Technology in Forensic
Science, and published by the National Academy Press, the report is often
referred to as “NRC I”. The committee’s main recommendation regarding the cold
hit process is given on page 124:

                                                                                                                                           
principle or discovery crosses the line between the experimental and demonstrable stages is
difficult to define. Somewhere in this twilight zone the evidential force of the principle must be
recognized, and while courts will go a long way in admitting expert testimony deduced from a
well-recognized scientific courts will go a long way in admitting expert testimony deduced from a
well-recognized scientific principle or discovery, the thing from which the deduction is made must
be sufficiently established to have gained general acceptance in the particular field in which it
belongs. We think the systolic blood pressure deception test has not yet gained such standing
and scientific recognition among physiological and psychological authorities as would justify the
courts in admitting expert testimony deduced from the discovery, development, and experiments
thus far made.” The court denied admission of the evidence. Frye v. United States, 293 F. 1013
(D.C. Cir. 1923)
6 The Porter case was the first time the D.C. Court was faced with adjudicating the admissibility
as evidence of a DNA profile match. (It was not a Cold Hit case.) The Court noted that, because a
person’s DNA profile is made up only of certain genetic markers and not the individual’s entire
unique DNA strand, it is possible for two people to coincidentally have the same profile. The
Court looked to the scientific community to determine how to express the significance of a match
through statistics. “Scientists calculate the possibility that the match is merely a coincidence and
that the two samples did not actually come from the same person,” the Court observed, and
concluded, “The probability of a coincidental match is an essential part of the DNA evidence.”
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“The distinction between finding a match between an evidence sample and a
suspect sample and finding a match between an evidence sample and one of
many entries in a DNA profile databank is important. The chance of finding a
match in the second case is considerably higher. … The initial match should be
used as probable cause to obtain a blood sample from the suspect, but only the
statistical frequency associated with the additional loci should be presented at
trial (to prevent the selection bias that is inherent in searching a databank).”

For example, if the NRC I procedure were to be followed in the Jenkins case,
since Jenkins was identified by a cold hit search on 8 loci, and subsequently
found to have a match on all 13 CODIS loci, the prosecution could cite in court
only the RMP calculated on the remaining 5 loci, namely one in one-hundred-
thousand. The prosecution has repeatedly rejected this option.

In part because of the controversy the NRC I report generated among scientists
regarding the methodology proposed, and in part because courts were observed
to misinterpret or misapply some of the statements in the report, in 1993, Judge
William Sessions, then the Director of the FBI, asked the NRC to carry out a
follow-up study. A second committee was assembled, and it issued its report in
1996. Often referred to as “NRC II”, the second report, The Evaluation of
Forensic DNA Evidence, was published by National Academy Press in 1996.

The NRC II committee’s main recommendation regarding cold hit probabilities is:

“Recommendation 5.1. When the suspect is found by a search of DNA
databases, the random-match probability should be multiplied by N, the number
of persons in the database.”

The statistic NRC II recommends using is generally referred to as the “database
match probability”, DMP. This is an unfortunate choice of name, since the DMP is
not a probability — although in all actual instances it is a number between 0 and
1, and it does (in my view as well as that of the NRC II committee) provide a
good indication of the likelihood of getting an accidental match when a cold hit
search is carried out. (The intuition is fairly clear. In a search for a match in a
database of N entries, there are N chances of finding such a match.) For a true
probability measure, if an event has probability 1, then it is certain to happen.
However, consider a hypothetical case where a DNA database of 1,000,000
entries is searched for a profile having a RMP of 1/1,000,000. In that case, the
DMP is

1,000,000  x  1/1,000,000  =  1

However, in this case the probability that the search will result in a match is not 1
but approximately 0.6312.
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The committee’s explanation for recommending the use of the DMP to provide a
scientific measure of the accuracy of a cold hit match reads as follows:

“A special circumstance arises when the suspect is identified not by an
eyewitness or by circumstantial evidence but rather by a search through a large
DNA database. If the only reason that the person becomes a suspect is that his
DNA profile turned up in a database, the calculations must be modified. There
are several approaches, of which we discuss two. The first, advocated by the
1992 NRC report, is to base probability calculations solely on loci not used in the
search. That is a sound procedure, but it wastes information, and if too many loci
are used for identification of the suspect, not enough might be left for an
adequate subsequent analysis. …  A second procedure is to apply a simple
correction: Multiply the match probability by the size of the database searched.
This is the procedure we recommend.” p.32.

This is essentially the same logic as I presented for my analogy with the state
lottery. In the Jenkins case, the DMP associated with the original cold hit search
of the (8 loci) Virginian database (containing 101,905 profiles) would be
(approximately)

1/100,000,000  x  100,000  =  1/1,000

With such a figure, the likelihood of an accidental match in a cold hit search is
quite high (cf. the state lottery analogy). This is borne out in dramatic fashion by
the Arizona study mentioned earlier, where, in a database of just 65,000 entries,
144 individuals were found with DNA profiles matching at 9 of the 13 CODIS
loci.7

Since two reports by committees of acknowledged experts in DNA profiling
technology and statistical analysis, with each report commissioned by the FBI,
came out strongly against the admissibility of the RMP, one might have imagined
that would be the end of the matter, and that judges in a cold hit trial would rule in
favor of admitting either the RMP for loci not used in the initial identification (à la
NRC I) or else (à la NRC II) the DMP but not the RMP calculated on the full
match.

However, not all statisticians agree with the conclusions of the second NRC
committee. Most notably, Dr. Peter Donnelly, Professor of Statistical Science at
the University of Oxford, takes a view diametrically opposed to that of NRC II. In

                                               
7 As I mentioned in an earlier footnote (page 9), the surprise in the Arizona study is not because it
contradicts the mathematics — when done correctly — rather that it runs counter to the way
people commonly interpret the math. I take up this issue later.
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an affidavit to the Court of the District of Columbia, in connection with the Jenkins
case, titled “DNA Evidence after a database hit” and dated October 3, 2004,
Donnelly observes that during the preparation of the NRC II report, he had
substantive discussions about the issues with four members of the committee
whom he knew professionally, and goes on to say:

“I had argued, and have subsequently argued, that after a database search, the
DNA evidence … is somewhat stronger than in the setting in which the suspect is
identified by non-DNA evidence and subsequently found to match the profile of
the crime sample. … I disagree fundamentally with the position of NRC II. Where
they argue that the DNA evidence becomes less incriminating as the size of the
database increases, I (and others) have argued that in fact the DNA evidence
becomes stronger. … The effect of the DNA evidence after a database search is
two-fold: (i) the individual on trial has a profile which matches that of the crime
sample, and (ii) every other person in the database has been eliminated as a
possible perpetrator because their DNA profile differs from that of the crime
sample. It is the second effect, of ruling out others, which makes the DNA
evidence stronger after a database search…”

Donnelly advocates using a Bayesian analysis to determine the probability of a
random match, which method he outlined in a paper co-written with David
Balding in 1996, titled “Evaluating DNA Profile Evidence When the Suspect is
Identified Through a Database Search” (J. Forensic Science 603) and again in a
subsequent article co-written with Richard Friedman: “DNA Database Searches
And The Legal Consumption Of Scientific Evidence”, Michigan Law Review,
00262234, Feb99, Vol. 97, Issue 4.

The statistic generated by the Donnelly/Balding method is generally close to the
RMP, although it results from a very different calculation.

The Donnelly/Balding method was considered by NRC II and expressly rejected.

We thus have a fascinating situation: two groups of highly qualified experts in
statistical reasoning, each proposing a different way to calculate the likelihood
that a cold hit search will identify an innocent person, and each claiming that its
method is correct and the other is dead wrong.

Although Donnelly and Balding’s Bayesian approach has been accepted in
courts in the UK and elsewhere in Europe, US courts have consistently taken the
view (wisely, I think) that Bayesian techniques are too subtle to be understood by
non-statisticians, and accordingly have never been allowed as evidence in a US
court.

Adding to that concern, the FBI’s DNA Advisory Board, in its report “Statistical
and Population Genetics Issues Affecting the Evaluation of the Frequency of
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Occurrence of DNA Profiles Calculated From Pertinent Population Database(s)”
[Forensic Science Communications, July 2000, Volume 2, Number 3, U.S.
Department of Justice, FBI]8, wrote:

… without the Bayesian framework, the Balding and Donnelly (1996)

formulation is easily misinterpreted in a fashion unfavorable to the suspect.

… [W]e continue to endorse the recommendation of the NRC II Report for

the evaluation of DNA evidence from a database search.

In fact, American courts have been reluctant to rely solely on statistical evidence
of any kind in determining guilt, and such use in DNA cases would be somewhat
of an exception. For example, in Brim v. Florida (799 So. 2d 427, Fla. Dist. Ct.
App. 2000), the court declared (779 So. 2d at 445 n.47):

It should not be overlooked that courts have traditionally prohibited the use of
statistical evidence to prove guilt in criminal trials.  See People v. Collins, 68 Cal.2d
319, 66 Cal. Rptr. 497, 438 P.2d 33 (1968) (noting, “[m]athematics, a veritable
sorcerer in our computerized society, while assisting the trier of fact in the search for
truth, must not cast a spell over him”); see also Laurence H. Tribe, Trial by
Mathematics: Precision and Ritual in the Legal Process, 84 Harv. L. Rev. 1329, 1377
(Apr. 1971) (concluding that utility of mathematical methods is greatly exaggerated,
that the methods inherently conflict with other important values, and thus “the costs of
attempting to integrate mathematics into the fact-finding process of a legal trial
outweigh the benefits”).  Thus, the admissibility of DNA statistical evidence can be
viewed as a departure from the general rule.

Personally, I (together with the collective opinion of the NRC II committee) find it
hard to accept Donnelly’s argument, but his view does seem to establish quite
clearly that the relevant scientific community (in this case statisticians) have not
yet reached consensus on how best to compute the reliability metric for a cold
hit, thereby ensuring that Frye may continue for a while longer to render
inadmissible as evidence the presentation of DNA match statistics in the case of
a cold hit. (I will explain why I think that two highly qualified groups of statisticians
reach diametrically opposite conclusions in due course.)

In the meantime, let me bring you up to date with progress so far in the Jenkins
case.

The Jenkins case

In April 2000, Raymond Jenkins was formally charged with second-degree
murder while armed and in possession of a prohibited weapon, a charge that was
superceded in October of the same year by one of two counts of felony murder
and one count each of first-degree premeditated murder, first-degree burglary

                                               
8 http://www.fbi.gov/hq/lab/fsc/backissu/july2000/dnastat.htm
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while armed, attempted robbery while armed, and the possession of a prohibited
weapon.

In March 2001, lawyers from the D.C. Public Defenders Office assigned to
Jenkins’ defense filed a motion to exclude the government’s DNA typing results
at trial, arguing that the FBI’s typing methodologies were inadmissible under the
standard for admission of novel scientific evidence set forth in the 1923 Frye
ruling.

In May of that year, the government filed a response, arguing the contrary.

Three years of motions and countermotions later — during which time Jenkins’
original defense counsel left the Public Defender Service and new counsel was
appointed — in late March and early April 2005 the matter finally came for
adjudication, when the honorably Rhonda Reid Winston granted the
government’s request for an evidentiary hearing as to whether it could present
the RMP (more specifically, its own calculated RMP of 1 in 26 quintillion) as a
generally accepted, accurate expression of the statistical significance of a cold hit
match resulting from a database search. (The government added that it would
not object if the defense chose to introduce the database match probability, as
recommended by NRC II, but only if that figure were presented in addition to its
RMP.)

The crux of the government’s case was that the RMP describes a generally
accepted, objective fact about DNA profiling, and that the method whereby the
match was obtained is a question not of science but of procedure, and thus is not
subject to exclusion under Frye. Citing Porter (another DNA profiling case,
remember), lawyers representing Jenkins argued against the government’s
proposition, pointing out that the relevant experts disagree as to whether a
database search procedure increases, decreases, or does not effect the strength
of the match evidence, and hence disagree as to which statistical methodology is
valid in a cold hit case. Both sides brought expert witnesses into court to support
their respective cases, in addition to soliciting affidavits.9

The court heard argument from both sides on April 4, 2005, and issued a ruling
the following day. Broadly speaking, the court ruled in favor of the position
advocated by the defense. At the time of writing this article (November 2005), the
government has filed an appeal against Judge Winston’s ruling.

The statistical options

The Jenkins case has so far given rise to five different statistical methods for
calculating the significance of a cold hit match.

                                               
9
 Including an affidavit from me.
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1. Report the RMP (alone). This is the approach advocated by the government.
The government cited two experts, Dr. Fred Bieber (a pathologist) and Dr. James
Crow (a geneticist, and chairman of the NRC II committee), who claim that the
search process has no effect on the statistical significance of a match, and hence
that the RMP is a reliable indicator. While some statisticians have argued in favor
of this approach, many have argued strongly against it (a view I share). The NRC
II report came down firmly against any mention of the RMP in court.

2. Report the DMP (alone). This is the approach advocated by NRC II. In that
report, the committee use an analogy with tossing a coin to illustrate the
inapplicability of the RMP:

“[I]f we toss 20 reputedly unbiased coins once each, there is roughly one chance
in a million that all 20 will show heads. According to standard statistical logic, the
occurrence of this highly unlikely event would be regarded as evidence
discrediting the hypothesis that the coins are unbiased. But if we repeat this
experiment of 20 tosses a large enough number of times, there will be a high
probability that all 20 coins will show heads in at least one experiment. In that
case, an event of 20 heads would not be unusual and would not in itself be
judged as evidence that the coins are unbiased. The initial identification of a
suspect through a search of a DNA database is analogous…: A match by chance
alone is more likely the larger the number of profiles examined.”

During the Jenkins proceedings, different groups of scientists suggested that the
DMP is not an accurate measure of significance for a cold hit. The government’s
experts argued that the DMP is a relevant statistic but interpreted NRC II
(incorrectly by my reading of the NRC II report) as allowing both the RMP and the
DMP to be presented in court. The Balding/Donnelly school said they believed
that the DMP underestimates the significance of a match. A third group believed
that the DMP overestimates the significance of a match and suggested that the
NRC I method of using only confirmatory loci, not used in the initial database
search, be used to calculate the RMP, which figure should then be presented to
the jury as an indication of the likely accuracy of the identification.

3. Report both the RMP and the DMP. This approach is advocated by the FBI’s
DNA Advisory Board, which argues that both figures are “of particular interest” to
the jury in a cold hit case, although it’s not clear how laypersons could weigh the
relative significance of the two figures, nor indeed is it at all clear that it would be
right to ask them to so do, when some of the world’s best statisticians are not
agreed on the matter. In the original Porter judgment, Judge Kennedy declared
that a jury should not be asked to decide scientific issues on its own.

4. Report the results of the Balding/Donnelly Bayesian approach. Roughly
speaking, Balding and Donnelly believe that a cold hit carries more weight than a
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purely random match and that the significance of a cold hit match increases as
the database size goes up, arguing that an important feature of a search through
a database of, say, 100,000 entries that results in a hit is that it eliminates 99,999
people from consideration.

Donnelly points out that if the search was through a database of the entire
population of the world, a unique match would, barring laboratory errors, indicate
certainty of guilt, and infers from this that the closer we get to such a
(hypothetical?) global database, the greater becomes the accuracy of the cold hit
method. Of course, if there were a global database of all living persons, there
would be no need for statistics at all; a statistical analysis is required when
decisions have to be made based on evidence from a small sample.
Nevertheless, from a logical standpoint, Donnelly’s observation does seem
reasonable (at least at first blush), and hence presents a challenge to all who
support the NRC II’s claim that as the database size increases, so too does the
likelihood of an innocent person being identified by the database search.

As mentioned earlier, Balding and Donnelly approach statistical reasoning from a
strict Bayesian perspective, and I'll outline presently how such reasoning
proceeds. For the moment, I note that, using Bayesian analysis to compute their
own reliability statistic for a cold hit match, they arrive at a figure just slightly
smaller than the RMP.

5. Report the RMP calculated on confirmatory loci not considered in the initial
search. This is the approach advocated by NRC I, and is the only one that the
entire scientific community seems to agree is reliable (though not all actively
argue for its use). Several scientists have argued (in the Jenkins case and
elsewhere) that this is in fact the only reliable procedure, and that even the NRC
II method should not be used. In the Jenkins case, the government has
consistently refused to follow the NRC I procedure.

Given that, at least under Frye, the lack of scientific consensus (which the above
five positions make abundantly clear) leaves the courts unable to admit the DNA
profile evidence the FBI consistently favors — namely one where a the RMP on
13 loci, or something very close to it, is presented to the jury — the only way
forward might be to follow the NRC I approach, with DNA profiles based on more
loci than the current CODIS system. If profiles were based on, say, 20 loci, then
10 could be used to carry out a cold hit search, leaving 10 others for confirmatory
identification that could be presented in Court, using the RMP computed on 10
loci. This would give the government an admissible likelihood statistic of 1 in 10
billion, which is surely enough to convince any jury. (Of course, adoption of such
a process would be expected to result in more suspects being eliminated, when
the confirmatory profiling fails to produce a match. That would undoubtedly lower
the FBI’s conviction rate, but would clearly better serve justice.) A few years ago,
this way out of the dilemma was not available, due to the limitations of DNA
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profiling technology, but today commercially available profiling systems exist that
could allow the use of profiles on at least 21 loci. As several parties have
observed (though some would dispute this), this procedure might “waste
evidence”. But, by giving all parties essentially what they keep asking for, it would
at least allow the process to move forward.

NRC v Balding–Donnelly

The position put forward by Prof. Peter Donnelly in the Jenkins case (and
elsewhere) causes considerable conflict in many informed onlookers who are
convinced by the reasoning of NRC II. (I count myself as one such.) Not just
because the impressive statistical credentials that Donnelly and his like-minded
colleagues bring to the debate force us to take what they say very seriously, but
because, if you follow their argument with care, they seem to make a good case.
And yet their conclusion appears to fly in the face of NRC II.

For example, in the Donnelly–Friedman paper “DNA Database Searches And
The Legal Consumption Of Scientific Evidence” (Michigan Law Review,
00262234, Feb99, Vol. 97, Issue 4), the authors write:

Though the NRC reports differ in their ultimate recommendations, their analyses of
the database search problem are very similar. We believe that these analyses, and
those of scholars who have supported the NRC approach, are clearly wrong. They
ask the wrong question, and they fail to recognize the full import of evidence of
identification based on a database search.

The proper view of the situation, which we will present here, reflects a rather simple
intuition. The value of a DNA match is attributable to the rarity of the profile. If the
DNA of a particular person matches the crime sample, that evidence strongly
supports the proposition that that person was the source of the crime sample; that
is, the evidence makes that proposition appear far more probable than it did before
the match was known. That other samples have been tested and found not to
match does not weaken the probative value of the match, with respect to this
particular proposition, which is the one of interest at the time of trial. On the
contrary, this result somewhat strengthens the probative value of the match,
because it eliminates some other persons as potential sources. How probable it
appears that the particular person is the source depends not only on the DNA
evidence but also on the other evidence in the case. If there is no other evidence

pointing to him, then the proposition will not appear as likely as if there were such
evidence — not because the DNA evidence is any less valuable, but because the
prior probability of the proposition is so low. And evidence found after the DNA

match is determined might be subject to a ground of skepticism — the possibility of
suggestiveness created by the match itself — not applicable to evidence found
beforehand. Thus, the probability that the defendant is the source of the crime
sample may well appear less in the trawl case than in the confirmation case, but
this is not because the DNA evidence itself is any weaker in the trawl case.

We will now explore the reasoning that leads to these conclusions.

Both NRC I and NRC II emphasized that, as the number of profiles tested
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increases, so too does the probability of finding a match with the crime sample.
That is indisputably true. One can even say that the larger a database is the more
likely it is that the database will yield at least one false positive result — a profile
that matches the crime scene sample but that does not come from the source of
that sample.(n51) But the conclusion that the NRC reports draw is that the larger a
database is (up to a point) the less valuable is evidence that a database trawl
yielded a single match. Here the NRC and its supporters go wrong.

The proposition that the DNA evidence is offered to prove is not the broad one that
the source of the crime sample is a person represented in the database. Rather, it
is that one particular person — the defendant in the case at hand — is the source
of that sample. And the evidence bearing on this proposition is not simply that
there was one match within the database. Rather, it is that the DNA of that
particular person — alone of all those tested — matches the crime sample.

[The emphasis in the above passage is in the original. In a moment I will argue
that we should take very serious note of the words they chose to highlight. I
believe it points to the fundamental issue in the matter.10]

Various experts in the arena of DNA profiling have made the claim that both the
NRC committee and Balding–Donnelly are right, but that each tries to answer a
different question.

For instance, in its report “Statistical and Population Genetics Issues Affecting
the Evaluation of the Frequency of Occurrence of DNA Profiles Calculated From
Pertinent Population Database(s)” [Forensic Science Communications, July
2000, Volume 2, Number 3, U.S. Department of Justice, FBI]11, the FBI’s DNA
Advisory Board wrote:12

If we follow Balding and Donnelly (1996), the message for the investigators is that the
evidence is 100,000 times more likely if the suspect is the source than if he is not.
Alternatively, by the NRC II Report (1996) recommendations, the evidence is not
compelling because the likelihood the profile, a priori, is/is not in the database is the
same. In probabilistic terms, it is not surprising to find a matching profile in the
database of size 100,000 when the profile probability is 1/100,000. Curiously, the
mathematics underlying both approaches are correct, despite the apparently divergent
answers. It is the foundations of the formulations that differ, and they differ
substantially.

With regard to whether the two groups ask different questions, Donnelly himself
writes, elsewhere in the Donnelly–Friedman article quoted from earlier:

                                               
10 Not that I have specific information as to why the authors themselves chose to highlight certain
keywords. Typographic clues may sometimes lead accidentally to fortuitous conclusions just as
Cold Hit searches may sometimes lead to false identifications.
11 http://www.fbi.gov/hq/lab/fsc/backissu/july2000/dnastat.htm
12 The figures in the passage refer to a hypothetical example where a database of 100,000
entries is trawled for a match on a profile with an RMP of 1/100,000 and produces a single match.
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… because they fail to ask the right question, NRC II and its supporters fail to
recognize the full force of proof that a single profile in a DNA database matches the
crime sample.

While it is undoubtedly true that the two groups work in different frameworks of
reasoning, I don’t think that it’s correct to say that they ask different questions.
The question each tries to answer is essentially the same, namely the very one
that the jury needs to know the answer to: Given an individual X who has been
identified by the Cold Hit database search, what is the probability that person X is
not the actual source of the DNA found at the crime scene? (Put another way,
what is the probability that the DNA at the crime scene, although having the
same profile as that of person X, actually comes from someone else?)

What makes the apparent conflict between NRC II and Balding–Donnelly so
puzzling is that this question appears to be one that must have a single, correct
answer. Surely there must be a single correct number, even if different people
arrive at it using different methods, right? And if there is a correct answer, you
should reach it whatever method you use. Yet NRC II and Balding–Donnelly not
only have different methods of computing the answer, the numbers they arrive at
are in general quite different, and moreover vary in dramatically different ways as
the size of the database increases.

Given that both parties have high levels of mathematical skill, it is reasonable to
assume that each is correct relative to the terms within which they are operating.
If so, then it must be the case that they trying to do different things. In what
follows, I will argue that this is indeed the case. It is not that they set out to
answer different questions, but that they interpret the common question in two
different logical frameworks, and that is why they arrive at very different answers.

Such a situation is hardly uncommon in human affairs. For instance, different
frameworks of beliefs lead citizens to arrive at very different answers to the
question “Who is most suitable to be the next President of the United States?”
Moreover, the answer each person obtains may be entirely logical and capable of
rational justification within their own belief system.

An analogous situation arises in mathematics with the classic question pertaining
to Euclid’s Fifth Postulate in geometry: “Given a straight line and a point not on
the line, can you draw exactly one line through the point and parallel to the line?”
Euclid believed the answer was yes, but in the 18th century mathematicians
discovered that it all depends on what kind of geometry you are working in, an
observation that became more significant in general terms when physicists
realized in the 20th century that the geometry of the universe we live in is in fact
one of the non-Euclidean varieties. Euclidian geometry is “correct” for some real
world applications; for other applications, you need to work in a different
geometric framework.
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None of the different kinds of geometries is intrinsically “right” or “wrong” from a
mathematical perspective. The issue is which geometry best meets the needs of
the application of concern. In the case of applying geometry to the physical
universe, that issue is decided by the physics itself. If my analogy between the
situation in geometry and the current DNA profile cold hit debate is sufficiently
valid,13 then in the cold hit case, presumably it will (in the final analysis) be up to
the courts to make that determination — although one would hope that they do
so at a federal level and only with considerable input from experts.

A significant, and perhaps surprising feature of the different frameworks adopted
by the two main parties in the Cold Hit debate (NRC II and Balding/Donnelly), is
that they mean different things by the word probability!

In that regard they are not alone.

What exactly does a numerical probability tell us?

Many people have considerable difficulty reasoning about probabilities. In my
experience, the vast majority of times when mathematically able people have
problems reasoning about probabilities it is because they unconsciously confuse
two very different notions, both of which are called “probability”. Indeed, many
people are not even aware that the word has two quite different (though
consistent) meanings.

For the kinds of example that teachers and professors typically use to introduce
students to probability theory, the answer to the question asked by the section
heading seems clear-cut. If you toss a fair coin, they say, the probability that it
will come down heads is 0.5 (or 50%).14 What this means, they go on to say, is
that, if you tossed the coin, say, 100 times, then roughly 50 times it would come
down heads; if you tossed it 1,000 times, it would come down heads roughly 500
times; 10,000 tosses and heads would result roughly 5,000 times; and so forth.
The actual numbers may vary each time you repeat the entire process, but in the
long run you will find that roughly half the time the coin will land on heads. This
can be expressed by saying that the probability of getting heads is 1/2, or 0.5.

Similarly, if you roll a fair die repeatedly, you will discover that it lands on 3
roughly 1/6 of the time, so the probability of rolling a 3 is 1/6.

                                               
13 And there is a vagueness here since we are talking about analogies.
14 Actually, as the mathematician Persi Diaconis demonstrated not long ago, it’s not exactly 0.5;
the physical constraints of tossing an actual coin result in roughly a 0.51 probability that it will land
the same way up as it starts. But I’ll ignore that  wrinkle for the purposes of this explanation.
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In general, if an action A is performed repeatedly, the probability of getting the
outcome E is calculated by taking the number of different way E can arise and
dividing by the total number of different outcomes that can arise from A. Thus,
the probability that rolling a fair die will result in getting an even number is given
by calculating the number of ways you can get an even number (namely 3, since
each of 2, 4, and 6 is a possible even number outcome) and dividing by the total
number of possible outcomes (namely 6, since each of 1, 2, 3, 4, 5, 6 is a
possible outcome). The answer, then, is 3 divided by 6, or 0.5.

Most instructors actually get the students to carry out coin tossing and dice rolling
experiments for themselves to help them develop a good sense of how numerical
probabilities arise.

Notice that the probability — the number — is assigned to a single event, not the
repetition of the action. In the case of rolling a die, the probability of 0.5 that the
outcome will be even is a feature of the single action of rolling the die (once). It
tells you something about how that single action is likely to turn out.
Nevertheless, it derives from the behavior that will arise over many repetitions,
and it is only by repeating the action many times that you are likely to observe
the pattern of outcomes that the probability figure captures. The probability of a
particular outcome of an action is a feature of that single outcome that manifests
itself only when the action is performed repeatedly.

Probability is, then, an empirical notion. You can test it by experiment. At least,
the kind of probability you get by looking at coin tossing, dice rolling, and similar
activities is an empirical notion. What causes confusion for many people is that
mathematicians were not content to leave the matter of trying to quantify
outcomes in the realm of games of chance — the purpose for which
(mathematical) probability theory was first developed in the seventeenth century.
They took it out into the everyday world — a decidedly less precise and self-
contained environment. And when they did so, it took on a quite different
meaning.

By way of an illustration of how probability theory can be applied in the everyday
world, consider the following scenario. Suppose you come to know that I have a
daughter who works at Google; perhaps you meet her. I then tell you that I have
two children. This is all you know about my family. What do you judge to be the
likelihood (dare I say, the probability?) that I have two daughters? (For the
purposes of this example, we’ll assume that boys and girls are born with exactly
50% likelihood.)

If you are like many people, you will argue as follows. “I know Devlin has one
daughter. His other child is as likely to be a boy as a girl. Therefore the
probability that he has two daughters is 1/2 (i.e., 0.5, or 50%).”
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That reasoning is fallacious. If you reason correctly, the probability to assign to
my having two daughters is 1/3. Here is the valid reasoning. In order of birth, the
gender of my children could be B-B, B-G, G-B, G-G. Since you know that one of
my children is a girl, you know that the first possibility listed here does not arise.
That is, you know that the gender of my children in order of birth is one of B-G,
G-B, G-G. Of these three possibilities, in two of them I have one child of each
gender, and in only one do I have two daughters. So your assessment of the
likelihood of my having two daughters is 1 out of 3, i.e., probability 1/3.

But even if you figure it out correctly, what exactly is the significance of that 1/3
figure? As a matter of fact, I do have two children and one of my children is a
daughter who works at Google. Does anyone believe that I live in some strange
quantum-indeterminate world in which my other child is 1/3 daughter and 2/3
son? Surely not. Rather, that 1/3 probability is a measure not of the way the
world is, but of your knowledge of the world (to be specific, your knowledge about
my family).

As it happens, I do have two daughters, and not surprisingly, I am aware of the
gender of my children. So if you asked me what probability I myself would assign
to my having two daughters, I would say probability 1. This is a different answer
from yours, reflecting the fact that we have different knowledge about the world.

The probability of 1/3 you (should) put on your knowledge about my two children
being girls is a feature of your knowledge. The probability of 1 that I put on my
knowledge about my two children being girls is a feature of my knowledge.
Neither of these probabilities is an objective feature of the world (though my
knowledge happens to agree with the world in this case). There is an objective
probability that is associated with the event that both my daughters are girls, and
that probability is 1. Obviously, when the event has already taken place, the
objective probability of that event can only be 0 or 1. Probabilities attached to the
world — not to someone’s knowledge of the world — can only be other than 0 or
1 when the event has not yet taken place.

The concept of probability you get from looking at coin tossing, dice rolling, and
so forth is generally referred to as “objective probability” or “frequentist
probability”. It applies when there is an action, having a fixed number of possible
outcomes, that can be repeated indefinitely. It is an empirical notion, that you can
check by carrying out experiments.

The numerical measure people assign to their knowledge of some event is often
referred to as “epistemic probability” or “subjective probability”.15 It quantifies an
individual's knowledge of the event, not the event itself.  Different people can

                                               
15 As used historically, the terms “epistemic probability” and “subjective probability” are not
completely synonymous, but the distinction is outside the scope of this article.
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assign different probabilities to their individual knowledge of the same event. The
probability you assign to an event depends on your prior knowledge of the event,
and can change when you acquire new information about it.

An objective (or frequentist) probability can be viewed as a subjective probability.
(A Bayesian would say it has to be so viewed.) For instance, the probability of 1/2
that I assign to the possibility of getting a head when I toss a fair coin ten minutes
from now is, when thought of as a measure of my current knowledge about a
future event, a subjective probability according to the definition just given.
(Clearly, when we quantify our information about a future occurrence of a
repeatable action, where the frequentist notion of probability applies, we should
assign the frequentist value.)

To drive home the crucial fact that there is a distinction here, imagine that the
above coin toss has already taken place. That is, I have just tossed a coin, and
seen that it came up tails, but you cannot see it and do not yet know the
outcome. What would you say is the probability that the coin came up heads?
The only rational answer you could give is 0.5. And yet the toss has already
occurred. Either it is heads or it is tails. In the world, the probability that the coin
is heads up is 0 and the probability that it is tails up is 1. Those are also the
probabilities I would assign to my knowledge of the coin toss. How come that you
calculate a different probability? Because what you are quantifying with your
calculation is your knowledge of the world.

I am sure that a confusion between the objective/frequentist and subjective/
epistemic notions of probability is what lies behind the problem many people
have in understanding the reasoning of the notorious Monty Hall problem. That
problem is posed to appear to be about a physical situation (where a prize is
hidden) but in fact it is not; it’s about your individual knowledge of that situation,
and how that knowledge changes as you receive additional information.

It is well worth going through this problem in some detail, as I believe the
(fundamental) confusions it highlights are precisely what is causing much of the
debate about Cold Hit probabilities.

The Monty Hall problem

In the 1960s, there was a popular weekly US television quiz show called Let’s
Make a Deal. Each week, at a certain point in the program, the host, Monty Hall,
would present the contestant with three doors. Behind one door was a
substantial prize; behind the others there was nothing. Monty asked the
contestant to pick a door. Clearly, the probability of the contestant choosing the
door with the prize was 1 in 3 (i.e., 1/3). So far so good.
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Now comes the twist. Instead of simply opening the chosen door to reveal what
lay behind, Monty would open one of the two doors the contestant had not
chosen, revealing that it did not hide the prize. (Since Monty knew where the
prize was, he could always do this.) He then offered the contestant the
opportunity of either sticking with their original choice of door, or else switching it
for the other unopened door.16

The question now is, does it make any difference to the contestant’s chances of
winning to switch, or might they just as well stick with the door they have already
chosen?

When they first meet this problem, many people think that it makes no difference
if they switch. They reason like this: “There are two unopened doors. The prize is
behind one of them. The probability that it is behind the one I picked is 1/3, the
probability that it is behind the one I didn’t is the same, that is, it is also 1/3, so it
makes no difference if I switch.”

A common variant is for people to think that the two probabilities are not 1/3 and
1/3, but 1/2 and 1/2. Again, the intuition is that they are faced with two equally
likely outcomes, but instead of regarding them as two equal choices that remain
from an initial range of three options, they view the choice facing them as a
completely new situation. This accords with the experience we all have in games
like coin tossing and dice rolling, where each new toss or roll is a brand new
event, totally uninfluenced by any previous tosses or rolls.

Surprising though it may seem at first, however, either variant of this reasoning is
wrong. Switching actually doubles the contestant’s chance of winning. The odds
go up from the original 1/3 for the chosen door, to 2/3 that the other unopened
door hides the prize.

Yet again, a grounding experience in probabilities in gambling games leads
people astray when it comes to reasoning about knowledge.

There are several ways to explain what is going on here. Here is what I think is
the simplest account.

Imagine you are the contestant. Suppose the doors are labeled A, B, and C. Let’s
assume you (the contestant) initially pick door A. The probability that the prize is
behind door A is 1/3. That means that the probability it is behind one of the other
two doors (B or C) is 2/3. Monty now opens one of the doors B and C to reveal

                                               
16 As the game was actually played, some weeks Monty would simply let the contestant open
their chosen door. The hypothetical version of the game described here, where Monty always
opens the door and makes the “switch or stick” offer, is the one typically analyzed in statistics
classes.
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that there is no prize there. Let’s suppose he opens door C. (Notice that he can
always do this because he knows where the prize is located.) You (the
contestant) now have two relevant pieces of information:

1. The probability that the prize is behind door B or C (i.e., not behind door
A) is 2/3.

2. The prize is not behind door C.

Combining these two pieces of information, you conclude that the probability that
the prize is behind door B is 2/3.

Hence you would be wise to switch from the original choice of door A (probability
of winning 1/3) to door B (probability 2/3).

Now, experience tells me that if you haven’t come across this problem before,
there is a good chance that the above explanation fails to convince you.

The instinct that compels people to reject the above explanation is, I think, a
deep-rooted sense that probabilities are fixed. That is true in the case of
frequentist probabilities — probabilities about the way the world is. But that is not
what the Monty Hall problem is about. The game has already been set up. The
prize already is behind exactly one of the doors. There is no uncertainty.
Moreover, Monty knows where the prize is. He too has no uncertainty. But you,
the game show contestant, do not have that certain knowledge. You are having
to reason about your knowledge. And that can change as you acquire more
information. It is because the acquisition of information changes the probabilities
associated with different choices that we often seek information prior to making
an important decision. Acquiring more information about our options can reduce
the number of possibilities and narrow the odds.

When you are the game show contestant and Monty opens his door and shows
you that there is no prize behind it, he thereby injects a crucial piece of
information into the situation. Information that you can take advantage of to
improve your odds of winning the grand prize. By opening his door, Monty is in
effect saying to you:

“There are two doors you did not choose, and the probability that the prize is
behind one of them is 2/3. I’ll help you by using my knowledge of where the prize
is to open one of those two doors to show you that it does not hide the prize. You
can now take advantage of this additional information. Your choice of door A has
a chance of 1 in 3 of being the winner. I have not changed that. But by
eliminating door C, I have shown you that the probability that door B hides the
prize is 2/3.”
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Still not convinced? Some people who have trouble with the above explanation
find it gets clearer when the problem is generalized to 100 doors. As the
contestant, you choose one door. You will agree, I think, that you are highly likely
to lose if you open that door. The chances are highly likely (in fact 99/100) that
the prize is behind one of the 99 remaining doors. Monty now opens 98 of those
other doors and none of them hides the prize. There are now just two remaining
possibilities: either your initial choice was right or else the prize is behind the
remaining door that you did not choose and Monty did not open. Now, you began
by being pretty sure you had little chance of being right — just 1/100 in fact. Are
you now saying that Monty’s action of opening 98 doors to reveal no prize
(carefully avoiding opening the door that hides the prize, if it is behind one of the
99 you did not choose) has increased to 1/2 your odds of winning with your
original choice? Surely not. In which case, the odds are high — 99/100 to be
exact — that the prize lies behind that one unchosen door that Monty did not
open. You should definitely switch. You’d be crazy not to!

Let me make one last attempt at an explanation. Back to the three door version
now. When Monty has opened one of the three doors and shown you there is no
prize behind, and then offers you the opportunity to switch, he is in effect offering
you a two-for-one switch. You originally picked door A. He is now saying, in
effect, “Would you like to swap door A for two doors, B and C? Oh, and by the
way, before you make this two-for-one swap I’ll open one of those two doors for
you, one without a prize behind it.”

In effect, then, when Monty opens door C, the attractive 2/3 odds that the prize is
behind door B or C are shifted to door B alone.

So much for the mathematical explanations. But at least as fascinating as the
mathematics, to my mind, is the psychology that goes along with the problem.
Not only do many people get the wrong answer initially (believing that switching
makes no difference), but a substantial proportion of them are unable to escape
from their initial confusion and grasp any of the different explanations that are
available (some of which I gave above).

On those occasions when I have entered into some correspondence with
laypersons, and there have been many of them over the years, I have always
prefaced my explanations and comments by observing that this problem is
notoriously problematic, that it has been used for years as a standard example in
university probability courses to demonstrate how easily we can be misled about
probabilities, and that it is important to pay attention to every aspect of the way
Monty presents the challenge. Nevertheless, I regularly encounter people who
are unable to break free of their initial conception of the problem, and thus unable
to follow any of the explanations of the correct answer.
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Indeed, some individuals I have encountered are so convinced that their (faulty)
reasoning is correct, that when I try to explain where they are going wrong, they
become passionate, sometimes angry, and occasionally even abusive. Abusive
over a math problem? Why is it that some people feel that their ability to compute
a game show probability is something so important that they become
passionately attached to their reasoning, and resist all attempts by me and others
to explain their error? On a human level, what exactly is going on here?

First, it has to be said that the game scenario is a very cunning one, cleverly
designed to lead the unsuspecting player astray. It gives the impression that,
after Monty has opened one door, the contestant is being offered a choice
between two doors, each of which is equally likely to lead to the prize. That would
be the case if nothing had occurred to give the contestant new information. But
Monty’s opening of a door does yield new information. That new information is
primarily about the two doors not chosen. Hence the two unopened doors that
the contestant faces at the end are not equally likely to lead to the prize. They
have different histories. And those different histories lead to different
probabilities.

That explains why very smart people, including many good mathematicians when
they first encounter the problem, are misled. But why the passion with which
many continue to hold on to their false conclusion? I have not encountered such
a reaction when I have corrected students’ mistakes in algebra or calculus.

I think the reason the Monty Hall problem raises people’s ire is because a basic
ability to estimate likelihoods of events is important in everyday life. We make
(loose, and generally non-numeric) probability estimates all the time. Our ability
to do this says something about our rationality — our capacity to live successful
lives — and our rationality is one of the distinctive features of being human. The
degree of our ability to reason can be regarded as a measure of “how good” a
person we are. It can thus be a matter of pride, something to be defended. (Few
people see calculus the same way, I regret to say, but then, unlike reasoning
about the likelihoods of future events, there have been few moments in the long
history of human evolution where skill in calculus has offered any survival value.)

Many people have trouble with the Monty Hall reasoning presented above
because they cannot accept that the probability attached to a certain door
changes. They argue that if the probability that the prize is behind any one door
is 1/3 at the start, then, because no one has moved the prize, it must still be 1/3.
Hence it makes no difference whether they stick with their original choice or
switch. The probability that it is behind either unopened door is 1/3 — they face
the same odds whether they stick or switch.

What they are doing is confusing two separate issues: how things are in the
world and what they know about the world. It is true that, since no one moves the
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prize or otherwise alters the physical arrangement of the game, the “probabilities-
in-the-world” do not change. But those probabilities are not 1/3, 1/3, 1/3: they are
0 for the two doors where there is no prize and 1 for the door where it is. (In other
words, there is no uncertainty at all; the matter has been settled.) But the
contestant’s knowledge of the situation most definitely does change. Monty’s
opening one door provides the contestant with new information, information that
on this occasion changes the contestant’s-knowledge-probabilities from 1/3, 1/3,
1/3 to 1/3, 2/3, 0 (assuming the contestant originally picks door A and Monty
opens door C).

The reasoning that the contestant needs to go through here is not about the way
the world is — although a superficial reading might suggest that he or she is so
doing — rather it is about the information the contestant has about the world. As
such, it is an example of Bayesian reasoning. At least, it would be if I had
presented the argument a bit differently. I’ll come back to that issue momentarily.
For now, it’s more accurate to say that, by focusing on what the contestant
knows and how the probabilities change when he or she acquires new
information, the reasoning I gave was at least in the philosophical spirit of the
Bayesian approach.

Bayesian reasoning

In Bayesian reasoning, probabilities are attached not to states of the world but to
statements (or propositions) about the world. You begin with an initial
assessment of the probability attached to a statement (in the Monty Hall example
it’s the statement that the prize is behind the unchosen door B, say, to which you
assign an initial, or prior probability of 1/3). Then you modify that probability
assessment based on the new information you receive (in this case, the opening
of door C to reveal that there is no prize behind it) to give a revised, or posterior
probability for that statement. (In this case the posterior probability you attach to
the statement that the prize is behind door B is 2/3.)

There is a specific and precise rule that tells you how to modify the prior
probability to give the posterior probability: Bayes’ Theorem. (I did not use that
rule in my solution to Monty Hall above — I’ll come back to that point in due
course.) The exact formulation of Bayes’ Theorem and exactly how it is used are
a bit technical, and not important to the main thrust of this article, so I’ll relegate a
discussion to an appendix. The crucial thing to know is the general framework
under which Bayesian reasoning takes place:

1. Bayesian reasoning is not about the world per se, but about the
knowledge the reasoner has about the world.

2. Thus, in Bayesian reasoning, probabilities are attached not to events but
to statements (or propositions), S.
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3. Bayesian reasoning is a formal reasoning procedure whereby an
individual can reason about the probability that he or she rationally
attaches to the likely validity of a certain statement S.

4. The reasoner begins with some initial probability p that S — the prior
probability.

5. The reasoner acquires some new information E, and on the basis of E is
able to modify p to give a new probability estimate q for S — the posterior
probability.

6. Bayes’ Theorem provides a precise formula, dependent on E, for going
from p to q.

7. If further information F comes in, the reasoner may repeat this process,
starting with q as the prior probability and applying Bayes’ Theorem using
the formula that comes from F.

8. And so on. When the process is completed, the reasoner has arrived at a
new (and hopefully more reliable) probability that S, which takes account
of all the evidence obtained.

Notice that in 2 above, the statement S will most likely be about the world. Thus,
in reasoning about the likely validity of S, the reasoner is highly likely to talk
about the world. But the probabilities the reasoner computes are all attached to
the possible validity of S. This may seem like a trivial point, and for very simple
scenarios (such as Monty Hall, where the scenario is simple, even if the
reasoning can be highly problematic for many people) it may be hard to follow
the distinction I am making, but this is what lies behind the debate — now over a
decade long — between the Bayesians such as Balding and Donnelly and the
advocates of the NRC procedure(s) regarding how to calculate the probability
that a Cold Hit match is a false positive. The NRC supporters calculate
probabilities attached to the world — the basic question they ask is “What might
the world be like?” The Bayesians calculate probabilities attached to their
knowledge of the world — to the evidence — and the basic question they ask is
“How accurately do I know what I know?” (Now you know why I was so struck by
the fact that in the article I excerpted above, Donnelly talked the whole time
about evidence and highlighted every single occurrence of the word
“evidence”.)17

Now, both approaches are mathematically correct. That means that mathematics
(and mathematicians) are not going to be able to rule between them with regards
to which approach should or should not be used in court proceedings. Ultimately,

                                               
17 Although the distinction between objective/frequentist and epistemic/subjective probabilities is
often discussed in more specialized works on probability theory (particularly works focusing on
the philosophical aspects of probability), I have not seen reference to the distinction in terms of
“probabilities in the world” and “probabilities about knowledge in the head” that I am doing here.
After many years of experience discussing confusions about probabilities with lay persons, I
believe that making the distinction the way I do may help many to clarify their understanding of
the issues.
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that will be up to the courts themselves to decide. (I’ll come back later to look at
what that decision might amount to in terms of how mathematics applies to the
world. Mathematics might not be able to decide the issue, but I think it can
provide some useful background information relevant to making such a decision.)

What mathematics (and mathematicians) can be definite — and emphatic —
about, however, is that the one thing that absolutely must not be allowed to
happen is that a court admits evidentiary reasoning that combines the two
approaches, arguing one way for one fact, the other way for the next, and so on.
The two approaches are not compatible. Try to combine them and the resulting
reasoning will not be logically sound. Once one approach is chosen, the other
must be ruled out of court. It’s like crossing the Atlantic by airplane. Before you
start, you have a choice between United Airlines and Air France. Either will get
you there safely, although the two carriers come from different cultures and
speak different languages. But once you have taken off, if you attempt to switch
planes, disaster will follow immediately.

One immediate difficulty in adopting a Bayesian approach is that, for anyone who
first learned about probability calculations by considering coin tossing or dice
rolling examples, or other gambling games — and that is most of us — it can be
very difficult to break away from that mindset and adopt a strictly Bayesian
approach.

For example, many people are never able to follow any of the arguments I gave
above for resolving the Monty Hall puzzle, so they resort to performing a
simulation, where they pay the game many times using the switch strategy and
an equal number of times using the stick strategy, and keeping track of the win-
loss record in each run. (The simulation can be played physically, with a friend
putting a nickel under one of three upturned eggcups each time and acting as
Monty Hall, or by writing a computer simulation, or, these days, by navigating to
one of a number of Websites that have Monty Hall simulators on them.) When
the skeptics see that they win roughly 2/3 of the games using the switch strategy
and roughly 1/3 of the games when they follow the stick strategy, they finally
acknowledge that switching does indeed double the chances of winning.
Individuals who have to resort to a simulation to resolve the matter seem to have
a genuine block to being able to adopt a Bayesian approach and reason about
knowledge; they feel they have to reason directly about the world.

Monty Hall with a twist

Turning now to my point that it is important not to mix Bayesian reasoning with
frequentist type arguments, consider a slightly modified version of the Monty Hall
game. In this variant, after you (the contestant) have chosen your door (door A,
say), Monty asks another contestant to open one of the other two doors. That
contestant, who like you has no idea where the prize is, opens one at random, let
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us say, door C, and you both see that there is no prize there. As in the original
game, Monty now asks you if you want to switch or stick with your original
choice. What is your best strategy?

The difference this time is that the choice of the door that was opened by the
other contestant was purely random, whereas in the original Monty Hall game,
Monty knew where the prize was and was able to use that knowledge in order to
ensure that he never opened a door to reveal the prize. This time, however, with
the revised procedure, there was a chance that the other contestant might have
opened the door with the prize behind it.

So, what would you do? If you adopt the reasoning I gave earlier for the original
Monty game, you will arrive at the same conclusion as before, namely that you
should switch from door A, and that exactly as before, if you do so you will
double your likelihood of winning. Why? Well, you will reason, you modified the
probability of the prize being behind door B from 1/3 to 2/3 because you acquired
the new information that there was definitely no prize behind door C. It does not
matter, you will say, whether door C was opened (to reveal no prize) by
deliberate choice or randomly. Either way, you get the same crucial piece of
information: that the prize is not behind door C. The argument (about what you
know and what you learn) remains valid. Doesn’t it?

Well, no, as a matter of fact it doesn’t. The problem was, although I took a
Bayesian approach to solving the original Monty puzzle, I did not use Bayesian
reasoning, which requires that you use Bayes’ theorem to revise probabilities.
Instead, I used everyday, run-of-the-mill, logical reasoning. As any Bayesian will
tell you, in revising probabilities as a result of the acquisition of new information,
it is important to know where that information came from, or at least to know the
probability that it would have arisen under the prevailing circumstances. In the
original Monty problem, Monty knows from the start where the prize is, and he
uses that knowledge in order to always open a door that does not hide a prize.
Moreover, you, the contestant, know that Monty plays this way. (This is crucial to
your reasoning, although you probably never realized that fact.) Bayes’ theorem
explicitly takes account of the probability that the new information would have
arisen in the given circumstance. In the argument I gave, I did not do that, since
Monty’s strategy effectively took care of that requirement for me.

In the modified Monty game, where the door is opened randomly by another
contestant, the likelihood that you obtain the evidence you do is different. Apply
Bayes’ theorem to this game and you reach the conclusion that the probabilities
of the prize being behind door A or door B (after door C has been opened and
shown not to lead to the prize) are equal.

The problem with the solution to the revised problem that I gave a moment ago is
that, when I argued
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Either way, you get the same crucial piece of information: that the prize is not
behind door B. The argument (about what you know and what you learn) remains
valid.

I was not reasoning about the information but about the world. In the world, as a
matter of empirical fact, when door C was opened it turned out that there was no
prize.

As a result of confusing reasoning about the world with reasoning about my
information about the world, I arrived at an incorrect answer.

This example highlights the point I made earlier that it is crucial not to combine
frequentist reasoning about the world with Bayesian reasoning about your
knowledge of the world.

It also illustrates just how subtle the distinction can be, and how easy it can be to
slip up. To repeat my earlier point, if you adopt a Bayesian approach, you have to
do so totally. For anyone who learned about probabilities by looking at gambling
games, and that is very likely all of us, that can be extremely hard to do.

If you try to reason through the modified Monty game using a frequentist-style
approach, focusing not on the information you have at each stage and what
probabilities you can attach to what you know, but instead attaching probabilities
to the different ways the game might come out, then you will reach the correct
answer, namely that in the modified game it makes no difference to you whether
you switch or stick. And if you simulate the modified game many times, you will
indeed find that it makes no difference which strategy you adopt, always switch
or always stick; you will win roughly 1/3 of the plays. (With the modified game,
the other contestant will also win roughly 1/3 of the plays, by opening the door to
claim the prize before you get the option to switch.)

Here, briefly, is the argument:

1. You choose one door, say, door A. The probability that the prize is there is
1/3. (i.e., you will win in roughly 1 out of 3 games)

2. The probability that the prize is behind one of door B and door C is 2/3.

3. The other contestant has a choice between door B and door C. The odds
she faces are equal. Assume she picks door C. The probability that she
wins is 1/2 x 2/3 = 1/3.

4. The probability that she loses is likewise 1/2 x 2/3 = 1/3. And that’s the
probability that you win if you switch. Exactly the same as if you did not.
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The choice facing the Jenkins court

At present, the issue that has kept the DNA cold hit identification evidence out of
the court in the Jenkins case is the absence of consensus in the scientific
community regarding how to calculate the statistical significance of a cold hit
match. Notwithstanding the introduction into the evidentiary hearings process of
no less than five different ways to proceed, there really is only one disagreement
of any real scientific substance, and that is between, on the one hand the
Balding/Donnelly Bayesian camp, and on the other hand those who are in
general agreement with the positions espoused by the two NRC committees, in
their reports NRC I and NRC II. Accordingly, it is on that specific two-party
dispute that I shall focus my attention. Resolve that, and a “scientific consensus”
acceptable to the court will surely follow quickly.

Personally, as someone trained in formal logic, having a lifelong professional
interest in forms of reasoning, I find the Bayesian school of thought a particularly
attractive one with considerable merit. But the method is not without its
difficulties, and one of them in particular is considerable. (I’ll get to that
momentarily.)

In the final analysis, the disagreement between the NRC camp and the
Balding/Donnelly Bayesian camp presents the Jenkins court (and any other court
trying to decide a cold hit case) with two distinct ways to proceed with regard to
the use (and hence admissibility) of statistics.

! Is it the court’s job to reason (in rational fashion) about the world(s) of
Dennis Dolinger and Raymond Jenkins, using statistical methods to try to
put numerical measures on the various things that may or may not have
happened in the world? This is the philosophy behind the NRC approach.

! Or is it the court’s job to focus not on the world but the evidence before it,
and use statistical methods to try to put numerical measures on the
reliability of that evidence? This is the Bayesian philosophy.

Arguably the court seeks to do both, but as I illustrated with my fairly lengthy
discussion of the Monty Hall problem (and variants thereof), in cases where
statistical inference is involved, this is not an option: the court must choose one
means and stick rigorously to it. Try to combine the two and things can go badly
wrong.

Donnelly advises us that the focus should be exclusively on the evidence — this
is precisely the Bayesians’ position. In his various writings, some of which I
quoted earlier, Donnelly has explained how the application of Bayes’ theorem
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may be used to modify the probability of guilt after a cold hit match (such as in
the Jenkins case) based on the evidence from the DNA profile.

Now, it is the very essence of the Bayesian approach — and crucial to its
success — that the entire reasoning process focuses exclusively on the
evidence. But suppose that, by virtue of the way the world happened to be at the
time, Jenkins was innocent of the Dolinger murder. Suppose that, as a matter not
of theory or statistics but of plain fact in the world, that he was like the lucky
jackpot winner, and that he became a suspect solely by virtue of the investigating
agencies having searched through a sufficient number of DNA profiles that the
number of profiles searched was of the same order of magnitude as the degree
of rarity of that profile in the relevant general population, thereby making it highly
likely that a match would be found?

It is precisely this possibility that the two NRC committees sought to account for.
It is precisely because, as indicated by the application not of sophisticated
statistical techniques but of simple counting, there is a very real possibility that
Jenkins is a suspect purely because the authorities looked at sufficiently many
DNA profiles that they were bound, sooner or later, to find someone whose
profile matched, that the two NRC reports stipulate that the search process itself
does not amount to evidence, and any evidence submitted to secure a conviction
must be found elsewhere, either by a DNA profile comparison carried out
elsewhere on Jenkins’ genome or else by alternative means altogether.

Moving on, what of Donnelly’s point that there is an inconsistency between the
NRC II claim that as the size of the DNA database searched increases, the
evidentiary value of a match decreases, and the fact that if there were a
database of every living person on earth, then a match obtained by such a
search would be conclusive proof of identity.

Well, first it should be noted that a key feature of Donnelly’s argument is that the
database search yields a unique match. For instance, in Donnelly & Friedman’s
article “DNA Database Searches And The Legal Consumption Of Scientific
Evidence” [Michigan Law Review, 00262234, Feb99, Vol. 97, Issue 4] we read:

18

Now consider in addition the fact that other samples have in fact been tested and found
not to match the crime sample. With respect to the precise proposition at issue — that
Matcher is the source of the crime sample — this fact can only enhance the probative
value of the DNA evidence. One reason for this is that the additional information that a
significant number of persons have been tested and found not to match the crime
sample can only make the profile of that sample appear rarer than it did absent that
information. This factor will almost always be of negligible importance, and we will put it
aside for further analysis. Potentially more importantly, a number of people other than
the defendant who previously appeared to be possible sources of the crime sample

                                               
18 The authors refer to the individual identified by the cold hit search as Matcher.
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have now been eliminated, thus making each of the remaining possibilities somewhat
more probable. Assuming, as is usually the case, that the size of the database is very
small in comparison to the suspect population, this effect too will be negligible, but as
the size of the database increases in comparison to that population, the effect
becomes dominant. If the database includes the entire suspect population, then the
existence of only one match points the finger without doubt (assuming accurate testing)
at the person so identified.

In the Jenkins case, there was a unique match, but that search was done on just
8 loci, and the recent Arizona study I mentioned earlier turned up multiple pairs of
individuals whose profile matched on 8 loci among a very small database, so it
seems possible that the uniqueness in the Jenkins case is just happenstance.19

With profiles based on 13 (or more) loci, given the sizes of databases in use
today, at most one match is highly likely. But with extremely large databases that
approach the population of the entire world — the size of database Donnelly
relies on to try to refute the NRC II position — it is likely that multiple matches will
be the norm.

But let’s put that issue aside for now. The Bayesian school would have the court
reason according to strict Bayesian methodology, focusing solely on the
evidence. Let us for the moment grant them that opportunity. In order to even
begin the Bayesian belief revision process (i.e., in order to start applying Bayes’
theorem) leading toward establishing the guilt of Raymond Jenkins, you have to
assign an initial probability (the prior probability) p to the proposition that Jenkins
is the person who murdered Dennis Dolinger. Having done that, you take the
evidence — including any available (i.e., admissible) evidence about the DNA
profile match — and use it with Bayes’ theorem in order to revise p (i.e., to obtain
a posterior probability q).

Well, Jenkins came under suspicion in the first place solely as a result of a cold
hit DNA profile database search based on 8 loci. Thus an eminently justifiable
value to take for p is the RMP associated with 8-loci searches, namely p  =
1/100,000,000.

But making use of the RMP for the original match in order to determine the prior
probability means it cannot be used as Bayesian “evidence” during the
subsequent Bayesian inference process. Hence, in the subsequent applications
of Bayes’ theorem, the only DNA matching evidence that may be used is for
matches on additional loci, of which there is a current 5-loci match (though
perhaps additional testing could be done on additional loci, should this be
thought desirable).

                                               
19 Lest it be assumed that I am here relying on multiple instances of unfortunate instances of
happenstance for Jenkins, let me point out that this is the same happenstance that put him under
suspicion in the first place. Everything else follows from that one initial database match, which
may or may not have been accidental.
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The prosecution in the Jenkins’ case, however, wishes to use the entire 13-loci
match as evidence. But, Jenkins was a suspect in the first place only because of
the database match, so if that match (and its associated RMP of 1 in ten trillion)
is to be treated as evidence in the Bayesian inference process, then no
probability associated with that database search can be taken for the initial prior
probability p, nor indeed be used in any way in order to determine p.

So how then do you determine p? Since, and this is not disputed by anyone
involved in the case, Jenkins was not a suspect prior to the database search, the
only mathematically justifiable value for p that remains is p = 0.

[Note added February 11, 2007: This paper is a work in progress, and the argument presented
here is not yet fully worked out. In fact, it is little more than a note to myself to come back to the
issue when I have the time. However, a number of lawyers have read this draft and have queried
me about the issue I raise, so I need to add a caution that this is a part of the paper that is not yet
completed. I believe that the question of the priors lies at the heart of the current disagreement
between the NRC II committee and Balding-Donnelly. Although p = 0 is, I believe the only prior
justifiable on mathematical grounds alone, all that really tells us is that the “correct” prior must be
determined using additional criteria. But that does not mean the mathematical considerations can
simply be thrown out of the window. Bayesian inference is a powerful mathematical tool, and all
aspects of its use require careful consideration from a mathematical perspective.]

Now, you can apply Bayes’ theorem as often as you like, but if you start with a
prior probability of 0, then you will get 0 at every stage. You will continue to get a
probative value of 0 after incorporating (via Bayes’ theorem) any evidence
obtained from the DNA profile match the FBI obtained on the 5 CODIS loci not
used in the original cold hit search and after incorporating any evidence obtained
from any other sources. That would of course make life extremely easy for the
Defense Counsel in the case, but it is unlikely that the prosecution would want to
go down that path.

Donnelly is of course aware of this possibility, and says that at the start of the
murder investigation, everyone is a suspect, and hence that everyone in the
world has a p value that is small but not zero. He writes:20

Even if at any stage of the investigation or trial there is not yet any evidence pointing to
Matcher, he, like everybody else in the world who had not been eliminated as a
possibility, is in fact a suspect in the limited sense that he is possibly the source of the
crime sample. Thus, an investigator or factfinder asked to do so might assign a
probability to the proposition that Matcher is the source.

You might ask yourself by what scientific means “an investigator or factfinder
asked to do so might assign a probability to the proposition that Matcher is the
source.”
                                               
20 P. Donnelly and D. Friedman, “DNA Database Searches And The Legal Consumption Of
Scientific Evidence” [Michigan Law Review, 00262234, Feb99, Vol. 97, Issue 4]
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(Incidentally, Donnelly needs to jump all the way to everyone in the world here
because it is only when there is a world database that his argument against NRC
II becomes effective.)

But Donnelly’s position that at the start of a criminal investigation every living
person in the world is a suspect, not only flies in the face of our widely accepted
principle of innocent until proved guilty, but — and arguably of more relevance to
our present study — cannot be justified. Besides not being in accordance with
how criminal investigators actually operate, if literally everyone in the entire world
were genuinely a suspect, then justice could be served only by explicitly
eliminating every single innocent person, an impossibly gargantuan task.
Donnelly introduces the “everyone is a suspect” notion for one reason only, and it
is not a legal reason. He introduces it because without it, his mathematics will not
work.

Determination of a justifiable initial prior probability is, in fact, the single weak link
in the Bayesian framework in many application of the method, not just criminal
prosecution. But it is a major weakness, and is the reason why the majority of
statisticians remain skeptical about the reliable applicability of the method, not
just in legal cases but more generally. Once a starting value has been obtained,
then, provided it is carried out correctly, with no “real world reasoning” getting
mixed in (a difficult task to be sure, as was illustrated by the simple, toy example
of the Monty Hall puzzle, but let us also leave that aside for now), Bayesian
inference is a rock solid, 100% reliable method for assigning (consequent)
probative value based on the additional evidence available.

Of course, the adage “garbage in, garbage out”, familiar in the data processing
world, is equally applicable in Bayesian reasoning. Unless the initial prior
probability is an accurate representation of reality, the entire subsequent analysis
is worthless.

But without a reliable starting value, the method never even gets off the ground.

In a cold hit case such as Jenkins, absent taking the RMP of the original
identification search as starting value for p (and then of necessity not using it as
Bayesian evidence in applying Bayes’ theorem), the only way to carry through a
Bayesian analysis is for someone to assign a starting value.

But who? How? On what basis? And under what legal authority?

As a mathematical logician, I find Bayesian reasoning internally consistent,
coherent, and mathematically attractive.
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Admittedly it is very hard to do correctly, but that should not prevent its use in
courts of law, provided the payoff were better judgments.

However, I do not think the Bayesian approach can lead to better judgments, at
least in Cold Hit DNA profile cases, and the reason is the framework’s one major
weakness, discussed above, concerning the determination of a starting value for
the probability attached to the target proposition.

In the end, despite my enormous admiration for and appreciation of the
mathematical elegance of the Bayesian methodology, and my recognition of the
crucial role it can and does play in some domains — particularly of note these
days the domain of Homeland Security — when it comes to the current debate
about Cold Hit statistics, I find it hard not to see a strong similarity between the
Bayesian camp and the ancient philosophers who devoted much time and
intellectual fervor to a dialectic investigation, from basic principles of logic, into
how many teeth a donkey has. According to the story, a young servant boy
interrupted the learned men in their discussion and said, “Excuse me, gentlemen,
I know you are all very clever, and much of what you say I don’t understand, but
why don’t you just go outside, find a donkey, and count its teeth.”

I believe that the story concludes with the philosophers, greatly angered by the
young lad’s impertinence, turning on him and running him out of town. So it is
with some trepidation that I suggest that, in the case of deciding which statistics
to use as evidence in a Cold Hit case, it’s time to count the donkey’s teeth. And
that means adopting the frequentist-based approach of reasoning about the real
world, not Bayesian reasoning about the evidence.

What can courts expect of juries in dealing with cold hit cases?

My personal interest in the question of how to assess the likelihood of a
coincidental match in a Cold Hit DNA profiling search began in March 2005,
when I was approached by the lawyers in the District of Columbia Public
Defender Office who were representing Raymond Jenkins. I was initially
somewhat surprised to be asked to help, since probability and statistics are not
my particular areas of research specialization in mathematics. It turned out,
however, that Jenkins’ lawyers were interested in me because of my
demonstrated abilities to take often difficult and arcane areas of advanced
mathematics and make them intelligible to a lay audience, and my (associated)
many years of experience (coming from written and verbal discussions with
people who have read my various books and articles, attended talks by me, seen
me on TV, or heard me on the radio) of the kinds of difficulties lay people
typically encounter when faced with mathematical issues.

The court considering the Jenkins case had before it a considerable amount of
background information and expert testimony, some of it contradictory, regarding
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the way the statisticians should compute the probability of error in a Cold Hit
search. What the Jenkins’ lawyers wanted from me was that I should interpret for
them that body of information, and help them to understand it.

After examining the relevant materials, I wrote a brief affidavit to be submitted to
the court, although at that point I had no idea what the case was that was under
consideration.

My interest in the matter aroused, I subsequently undertook a deeper study of
the issue. This paper is the result of that study. For the most part, the particular
expertise I bring to the study is simply that of being a qualified, professional
mathematician with 35 years of professional experience since I obtained my
Ph.D. in mathematical logic in 1971. The one area where I do however bring
what I believe is a fairly unique perspective and a notable level of expertise not
shared by most other mathematicians is in my many years of familiarity with the
kinds of difficulty that laypersons often have with mathematics — particularly
questions of probability theory (a topic I have frequently written on and spoken
about to lay audiences).

I believe that the perspective and experience I bring to this issue may be of value
as the courts try to decide what statistical evidence to present to juries and how
to assist them in weighing that evidence, but it does not and cannot carry the
weight of a properly conducted scientific study of laypersons abilities to
appreciate probabilistic figures. NRC II expressly called for such a study:

“Recommendation 6.1. Behavioral research should be carried out to identify any
conditions that might cause a trier of fact to misinterpret evidence on DNA
profiling and to assess how well various ways of presenting expert testimony on
DNA can reduce any such misunderstandings.”

NRC II’s ensuing commentary on recommendation 6.1 reads, in part:

“… At present, policymakers must speculate about the ability of jurors to
understand the significance of a match as a function of the method of
presentation. Solid, empirical research into the extent to which the different
methods advance juror understanding is needed.”

Such a study is indeed urgently needed, in my view. Not least because the
celebrated work of the psychologists Amos Tversky and Daniel Kahnemann in
the 1970s and 80s illustrated just how poorly the average person appreciates
and reasons with probabilities.21

                                               
21 See Daniel Kahneman and Amos Tversky, “Prospect theory: An analysis of decisions under
risk”, Econometrica, 47:313327, 1979.



43

In my affidavit to the April 2005, Jenkins evidentiary hearing, I wrote:

“Based on my 35 years of teaching mathematics, writing about it for
experts and for laypersons, broadcasting about it, and receiving letters
and emails from people from many walks of life, my belief is that many
people, maybe even the majority, fundamentally DO NOT
UNDERSTAND how probabilities work, even in the case of very simple
examples. Moreover, in many cases, no amount of explanations by me
or others can correct their false impressions. Well educated and
otherwise rational people generally seem very certain about their
probabilistic reasoning ability, even when their understanding is totally
flawed, and they often exhibit a strong resistance to even acknowledging
the possibility of their misunderstanding, let alone doing anything to
correct it. (I have speculated in published writings elsewhere that there
may be an evolutionary basis for this over-confidence.) Included among
the many people who have confidence in an erroneous conception of
probability are professors and teachers of mathematics and/or science. It
denigrates no one for me to suggest that the chances of having even
one person in a courtroom who really understands the issues
surrounding probabilities, even in very simple cases, and even if experts
are bought in to explain things, may be very low.

The above remarks apply to even very simple uses of numerical
probabilities. In the case of the use of the Cold Hit DNA matching
technique, the issues are so subtle that even highly credentialed world
experts can hold diametrically opposite views.”

In my view, introducing figures such as “one in 26 quintillion” or “one in ten
billion” or even “one in a million” into courtroom proceedings has almost no value,
since no one, not even professional mathematicians, has any real sense of what
such large numbers signify.

For example, do you know roughly how many seconds have elapsed since Christ
was born?

Is that number greater or smaller than the distance from San Francisco to New
York City measured in inches?

My point is not that anyone should know the answer to either question. Rather
that most people simply have no idea within several orders of magnitude.

And why should they? We hardly ever have to deal with such large numbers, and
never develop a sense of what they mean. For instance, below is a line
representing one billion, with zero at the left, one billion at the right. Before
reading any further, please make a pencil mark on the line where you think one
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million lies. There is no catch here. It’s not a trick question. Just put your mark
where your intuition tells you it should go.

___________________________________________________________________
          0             1b

For the record, just over 63 billion seconds have elapsed since Christ was born,
a number many, many orders of magnitude smaller than the 26 quintillion figure
the prosecution is so adamant must be presented to the jury in the Jenkins trial.

The distance from San Francisco to New York City measured in inches is just
under 163 million, much smaller than the number of seconds since Christ was
alive.

As for that line, unless you placed your mark at the very left hand end of the line,
you really don’t have any sense of a million and a billion and the difference
between them. Measured along the line shown, running from 0 to 1 billion, a
million is so close to 0 that it falls within the pencil mark you make at 0.

One final example to show just how ill equipped we are to handle large numbers
and the processes that produce them. Imagine taking an ordinary 8 " 8

chess-board and placing piles of counters 2 mm thick (a Quarter is fairly close)
on the squares according to the following rule. Number the squares from 1 to 64.
On the first square place 2 counters. On square 2 place 4 counters. On square 3
place 8 counters. And so on, on each square placing exactly twice as many
counters as on the previous one. How high do you think this pile on the final
square will be? 1 meter? 100 meters? A kilometer?

As a matter of fact, your pile of counters will stretch out beyond the Moon (a
mere 400,000 kilometers away) and the Sun (150 million kilometers away) and
will in fact reach almost to the nearest star, Proxima Centauri, some 4 light years
from Earth.

From a purely numerical point of view, a DNA profile match where the probability
of it having come from someone other than the guilty individual is demonstrably
less than 1 in ten million (say) should be sufficient to convict. Even the very best
forensic laboratories could not guarantee their overall process to that degree of
accuracy — no organization that depends on human performance can guarantee
such precision. But given the possibility of confounding factors such as relatives
(either known or unknown), in practice, it is surely reasonable and prudent to set
the bar much higher, as is currently done.

But figures such as 1 in 26 quintillion are surely massive overkill. Why then are
prosecuting attorneys so eager to quote such ridiculously large numbers in
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making their case that an accused is guilty? One can only assume that it is for
rhetorical effect; they hope that by presenting the jury with a number so large it
defies all imagination, the jury members — the majority of whom are likely not
only to have limited mathematical skills but in fact be intimidated by the subject
— will be sufficiently overwhelmed that they will not question the evidence, and
how it was arrived at.

But such use of numbers and mathematics — a system that when properly used
provides humanity with an extraordinary degree of precision in many walks of life
— makes a mockery of science and mathematics and is both intellectually
dishonest and morally indefensible.

Pending the results of the kind of study that NRC II advocates in
Recommendation 6.1 (which I anticipate will be such that what I am about to say
will remain valid), all my experience in dealing with laypersons in matters of
probabilistic reasoning leads me to suggest that the evidentiary introduction of
probabilities in court cases is always as likely to be incorrectly interpreted as
correctly, and thus should be kept out as far as is reasonably possible. Both
because many people experience enormous difficulty understanding probability,
even in simple cases  and even when others try to help them, and because the
potential for the misuse of probabilities by rhetorically skillful lawyers is simply too
great.

Far better simply to present jurors with evidence that is primarily qualitative, with
any numbers mentioned being within the comprehension of the average person.
For example, “Members of the jury, the DNA match indicates that X is the guilty
person. Like any human process, the process whereby the DNA match was
obtained carries with it a small chance of error. However, a body of experts
appointed by the National Academy of Sciences has examined the procedures
used, and they testify that the likelihood of an error here is so small that if you
were to serve on a jury considering such a case every day for a million years,
you would almost certainly never encounter a case where the DNA evidence
identified the wrong person.”

Demystifying the Arizona database study

To drive home the point about how laypersons are likely to misinterpret the large
figures often bandied around in courts, let me provide the explanation I promised
earlier as to why the results of the Arizona database survey (see pages 9, 14,
and 38), though seeming to contract the mathematics, are actually exactly what
the mathematics predicts.

I suspect many laypeople are likely to reason as follows: “Since DNA profiling
has an inaccuracy rate less than 1 in many trillion (or more), the chances of there
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being a false match in a database of maybe 3 million entries, such as the CODIS
database, is so tiny that no matter which method you use to calculate the odds, a
match will surely be definitive proof.” The intuition behind such a conclusion is
presumably that the database search has 3 million shots at finding a match, so if
the odds against there being a match are 1 in 10 trillion, then the odds against
finding a match in the entire database are roughly 1 in 3 million (3 million divided
by 3 trillion is roughly 1/3,000,000).

Unfortunately — at least it could be for an innocent defendant in the case — this
argument is not valid. In fact, notwithstanding an RMP in the “1 in many  trillion”
range, even a fairly small DNA database is likely to contain many pairs of
accidental matches, where two different people have the same DNA profile. A
tiny RMP simply does not mean there won’t be accidental matches. The
argument is the same as the one used in the famous Birthday Paradox (actually
not a paradox, just a surprise) that you need only 23 randomly selected people in
a room in order for the probability that two of them share a birthday to be greater
than one-half. (The probably works out to be 0.507.)

The Arizona DNA convicted offender database has some 65,000 entries, each
entry being a 13 loci profile. Suppose, for simplicity, that the probability of a
random match at a single locus is 1/10, a figure that, as we observed earlier, is
not unreasonable. Thus the RMP for a 9 locus match is 1/109, i.e., 1 in 1 billion.
You might think that with such long odds against a randomly selected pair of
profiles matching at 9 loci, it would be highly unlikely that the database contained
a pair of entries that were identical on 9 loci. Yet, by the same argument used in
the Birthday Puzzle, the probability of getting two profiles that match on 9 loci is
around 5%, or 1 in 20. For a database of 65,000 entries, that means you would
be quite likely to find some matching profiles!

Before I sketch the calculation, I’ll note that the answer becomes less surprising
when you realize that for a database of 65,000 entries, there are roughly 65,0002

= 4,225,000,000 (just over 4 billion) possible pairs of entries, each one of which
has a chance of yielding a 9-loci match.

Because the database calculation involves very large numbers, I’ll first of all go
through the math that resolves the Birthday Paradox itself.

The question, remember, is how many people you need to have at a party so that
there is a better-than-even chance that two of them will share the same birthday?
Most people think the answer is 183, the smallest whole number larger than
365/2. The number 183 is the correct answer to a very different question: How
many people do you need to have at a party so that there is a better-than-even
chance that one of them will share your birthday? If there is no restriction on
which two people will share a birthday, it makes an enormous difference. With 23
people in a room, there are 253 different ways of pairing two people together,
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and that gives a lot of possibilities of finding a pair with the same birthday.

To figure out the exact probability of finding two people with the same birthday in
a given group, it turns out to be easier to ask the opposite question: what is the
probability that NO two will share a birthday, i.e., that they will all have different
birthdays? With just two people, the probability that they have different birthdays
is 364/365, or about .997. If a third person joins them, the probability that this
new person has a different birthday from those two (i.e., the probability that all
three will have different birthdays) is (364/365) x (363/365), about .992. With a
fourth person, the probability that all four have different birthdays is (364/365) x
(363/365) x (362/365), which comes out at around .983. And so on. The answers
to these multiplications get steadily smaller. When a twenty-third person enters
the room, the final fraction that you multiply by is 343/365, and the answer you
get drops below .5 for the first time, being approximately .493. This is the
probability that all 23 people have a different birthday. So, the probability that at
least two people share a birthday is 1 - .493 = .507, just greater than 1/2.

The following table shows what happens for some other values of n, the number
of randomly selected people in the room.

 n Probability of at least one match

23 50.7%

25                                         56.9%

30 70.6%

35 81.4%

40 89.1%

45 94.1%

50   97.0%

You need only have 50 people to make getting a coincidence an odd-on
certainty!

Now for the Arizona database. The reason you can expect 9-locus matches is
the same as for the coincident birthdays, but the numbers involved are much
bigger, and accordingly I’ll present the calculation in a slightly different way.
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Recall that we have a DNA profile database with 65,000 entries, each entry being
a 13-loci profile. We suppose that the probability of a random match at a single
locus is 1/10, so the RMP for a 9 locus match is 1/109, i.e., 1 in billion.

Now, there are 13!/[9! x 4!] = [13 x 12 x 11 x 10]/[4 x 3 x 2 x 1] = 715 possible
ways to choose 9 loci from 13, so the RMP for finding a match on any 9 loci of
the 13 is 715/109.

If you pick any profile in the database, the probability of a second profile not
matching on 9 loci is roughly 1 – 715/109.

Hence, the probability of all 65,000 database entries not matching on 9 loci is
roughly (1 – 715/109)65,000. Using the binomial theorem, this is approximately  1 –
65,000 x 715/109 = 1 – 46,475/106, roughly 1 – .05.

The probability of there being a 9-locus match is the difference between 1 and
this figure, namely 1 – (1 – 0.05) = 0.05. That’s roughly a 5% chance.

So the results found in the Arizona database study should not come as a surprise
to anyone who understands the mathematics. But can we really expect the
average judge and juror to follow the above calculation? Some may argue yes,
but my thirty years teaching mathematics at university level, never mind my
experience explaining math to wider, lay audiences tells me that such an
assumption is totally unrealistic.

APPENDIX  Bayes’ theorem and Bayesian inference

Bayesian analysis depends on a mathematical theorem proved by an 18th
Century English Presbyterian minister by the name of Thomas Bayes. Bayes’
theorem languished largely ignored and unused for over two centuries (in large
part because of its dependence on an initial prior probability figure, for which
there is often no justifiable means of determination) before statisticians, lawyers,
medical researchers, software developers, and others started to use it in earnest
during the 1990s.

What makes this relatively new technique of “Bayesian inference” particularly
intriguing is that it uses an honest-to-goodness mathematical formula (Bayes’
Theorem) in order to improve — on the basis of evidence — the best (human)
estimate that a given proposition is true. In the words of some statisticians, it’s
“mathematics on top of common sense.” You start with an initial estimate of the
probability that the proposition is true and an estimate of the reliability of the
evidence. The method then tells you how to combine those two figures — in a
precise, mathematical way — to give a new estimate of the probability the
proposition is true in the light of the evidence.
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In some highly constrained situations, both initial estimates may be entirely
accurate, and in such cases Bayes’ method will give you the correct answer. (For
example, in resolving the Monty Hall puzzle and its variants.)

In a more typical real-life situation, you don’t have exact figures, but as long as
the initial estimates are reasonably good, then the method will give you a better
estimate of the probability that the event of interest will occur. Thus, in the hands
of an expert in the domain under consideration, someone who is able to assess
all the available evidence reliably, Bayes’ method can be a powerful tool.

In general, Bayes’ method shows you how to calculate the probability (or improve
an estimate of the probability) that a certain proposition S is true, based on
evidence for S, when you know (or can estimate):

(1) the probability of S in the absence of any evidence;

(2) the evidence for S;

(3) the probability that the evidence would arise regardless of whether S or not;

(4) the probability that the evidence would arise if S were true.

The key formula that tells you how to update your probability (estimate) is given
by Bayes’ theorem, which I outline below.

Let P(S) be the numerical probability that the proposition S is true in the absence
of any evidence. P(S) is known as the prior probability.

You obtain some evidence, E, for S.

Let P(S|E) be the probability that S is true given the evidence E. This is the
revised estimate you want to calculate.

A quantity such as P(S|E) is known as a conditional probability — the conditional
probability of S being true, given the evidence E.

Let P(E) be the probability that the evidence E would arise if S were not known to
be true and let P(E|S) be the probability that E would arise if S were true.

The ratio P(E|S)/P(E) is called the likelihood ratio for E given S.

Bayes’ theorem says that the posterior probability P(S|E) is derived from the prior
probability P(S) by multiplying the latter by the likelihood ratio for E given S:

P(S|E) = P(S)  x  P(E|S) / P(E)
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Notice how the formula reduces the problem of computing how probable S is,
given the evidence, to computing how probable it would be that the evidence
arises if S were true.

To indicate just how difficult it can be to carry our correct Bayesian reasoning,
using Bayes’ theorem, you might like to try using the above formula in order to
resolve the two variants of the Monty Hall problem, the original version where
Monty always opens an unchosen door that has no prize (where the answer is
that the probability of winning doubles from 1/3 to 2/3 if you switch) and the
variant where another contestant opens an unchosen door (and the answer is
that it makes no difference whether you switch or stick).22

In any court case where conditional probabilities are introduced, juries need to be
careful not to confuse the very different probabilities

! P(G|E), the conditional probability that the defendant is guilty given the
evidence;

! P(E|G), the conditional probability that the evidence would be found
assuming the defendant were guilty;

! P(E), the probability that the evidence could be found among the general
population

The figure of relevance in deciding guilt is P(G|E).

As Bayes’ formula shows, P(G|E) and P(E) can be very different, with P(G|E)
generally much lower than P(E). This is why the introduction of P(E) in court
proceedings is so undesirable.

Bayesian inference methods lie behind a number of new products on the market.
For example, chemists can take advantage of a software system that uses
Bayesian methods to improve the resolution of nuclear magnetic resonance
(NMR) spectrum data. Chemists use such data to work out the molecular
structure of substances they wish to analyze. The system uses Bayes’ formula to
combine the new data from the NMR device with existing NMR data, a procedure
that can improve the resolution of the data by several orders of magnitude.

                                               
22 In the variant game, it is not the case that the opening of an unchosen door by the second
contestant does not change what you know. If the door opened reveals the prize, then of course
your knowledge has changed; and what is more, the game is over. But even if that opened door
does not hide the prize, its opening changes the posterior probabilities. However, whereas the
posterior probabilities that the prize is behind door A or door B after Monty opens door C in the
standard Monty Hall game are 1/3 and 2/3, respectively, making it wise to switch, in the variant, if
the other contestant opens door C and there is no prize, the posterior probabilities are 1/2 for
door A and 1/2 for door B (the prior probabilities for all three doors are 1/3, of course), and thus it
does not matter whether you switch or stick.
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Other recent uses of Bayesian inference are in the evaluation of new drugs and
medical treatments and the analysis of police arrest data to see if any officers
have been targeting one particular ethnic group.
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