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CHAPTER 3

Elements of Probability

3.1 Some fundamentals of probability calculation

Many probability puzzles can be made transparent with knowledge of a few
basic rules and methods of calculation. We summarize some of the most useful
ideas in this section.

Probabilities

In the classic formulation, probabilities are numbers assigned to elements of
a sample space. The sample space consists of all possible outcomes of some
conceptual experiment, such as flipping a coin or rolling dice. In making cal-
culations, probability numbers are assigned to the “simple” (indecomposable)
elements, or events, of the sample space. A subset of simple events is called a
“compound” event, and its probability is defined as the sum of the probabilities
of the simple events it contains. For example, if a coin is tossed four times,
the simple events comprising the sample space are the possible sequences of
heads and tails in four tosses; there are 16 such sequences, of which heads-
tails-heads-tails (HTHT) is an example. A compound event is some subset of
the 16 sequences, such as tossing two heads in four tails, which consists of the
simple events HHTT, HTHT, HTTH, HHTT, THHT, and TTHH. The rules of
the calculus of probabilities discussed in this section give some short cuts for
calculating probabilities of compound events. Some probability chestnuts turn
on the proper definition of the sample space, as the example below shows.

Example. Assume that boys and girls are born with equal frequency. Mr.
Able says, “I have two children, and at least one of them is a boy.” What is the
probability that the other child is a boy? Mr. Baker says, “I went to the house
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of a two-child family, and a boy answered the door.” What is the probability
that the other child is a boy?

The answer to the first question is 1/3, but the answer to the second question
is 1/2. The reason for this small paradox is that the sample space defined by
Mr. Able consists of families with three birth sequences of children: boy-girl,
girl-boy, and boy-boy. Since each has the same probability, and since only in
the boy-boy case is the “other” child a boy, the probability of that event is 1/3.
In Mr. Baker’s case, by designating a particular boy (the one who answered the
door) the sample space of family types is reduced to two: the door-answering
child is a boy, and the other is a girl, or the door-answering child is a boy,
and the other is also a boy. Since there are only two possible family types, the
probability of boy-boy is 1/2, i.e., the probability of the other child being a boy
is 1/2.

The probability assigned to a simple event can be any number between 0
and 1. For purposes of applications, useful assignments represent the long-
range frequency of the events, such as 1/2 for the probability of tossing heads
with a coin. However, nothing in mathematical theory compels any particular
assignment of probabilities to simple events, except that an event certain not to
occur has probability 0,1 and the probabilities of the simple events constituting
a sample space must sum to 1.

The concept of probability also applies to the degree of belief in unknown
events, past or future. It has been shown that the calculus of probabilities
introduced in this section can consistently be applied to both interpretations
so that what probability “really is” need not be resolved to make use of the
mathematical theory. See Section 3.6.

Complementary events

The probability of the negation of a given event is one minus the probability
of the event. In symbols,

P[B̄] = 1 − P[B].

Examples.

• If there is a 1 in 5 chance of selecting a black juror from a venire, there is
a 4 in 5 chance of selecting a non-black juror.

• A game-show host (Monty Hall) presents a contestant with three closed
doors. Behind one of them is a prize, with equal likelihood for doors A,
B, or C. The contestant is asked to select a door; say he picks A. Before
opening that door, Monty opens one of the other doors, which both he and the

1In infinite sample spaces, an event with probability 0 may still occur if the infinitude
of possibilities is non-denumerable. For example, when a dart is thrown at a target, the
probability that any specified point will be hit is zero because points have zero width, but
still the dart hits the target at some point.
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contestant know will be empty; say B. Then Monty presents the contestant
with a choice: he may either stick with A or switch to C. Question: Is it
better to stick, or to switch, or does it not matter?
Answer: The contestant has a 1/3 chance that the prize is behind A and a
1 − 1/3 = 2/3 chance that the prize is behind B or C. Monty’s opening of
B doesn’t change the probability that the prize is behind A, because it gives
no information about the correctness of that choice. But by eliminating B,
the probability of the prize being at C is now 2/3. In short, the best strategy
is to switch.

Disjoint unions

• The union of two events A and B is the occurrence of A or B (or both), i.e.,
their inclusive disjunction. Thus, the union of two events encompasses both
the occurrence of either event without the other (their exclusive disjunction)
or the occurrence of both together (their exclusive conjunction).

• A and B are disjoint if they are mutually exclusive (i.e., their joint
occurrence, or logical conjunction, is impossible).

• The probability of a union of disjoint events A and B is the sum of their
individual probabilities. In symbols,

P [A or B] = P [A] + P [B].

Example. Suppose:

A = [Mr. F. is the girl’s father and has her blood type], with P [A] = 0.5, and
B = [Mr. F. is not the girl’s father, but has her blood type], with P [B] = 0.2.

Then:

P [A or B] = P [Mr. F has the girl’s blood type] = 0.7.

Unions in general

For events A and B, not necessarily disjoint, the probability of A or B equals
the sum of the individual probabilities less the probability of their conjunction,
A and B. In symbols,

P [A or B] = P [A] + P [B] − P [A and B].

The joint probability P [A and B] is subtracted because the sum of the
probability of A and the probability of B generally overestimates P [A and B]
because it counts the probability of the joint occurrence of A and B twice:
once in the probability of A alone and again in the probability of B alone.
This double counting is shown by the top Venn diagram in Figure 3.1, where
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the areas within the circles are proportional to the probabilities of events A
and B, respectively. The union of the two events is represented by the total
area covered by A and B. The region labelled AB represents their intersection
(conjunction).

It follows that the probability of A or B is no greater than the sum of their
individual probabilities. In symbols,

P [A or B] ≤ P [A] + P [B].

The same reasoning leads to the more general inequality

P (A or B or C . . .) ≤ P (A) + P (B) + P (C) + . . .

Although there are other inequalities due to Bonferroni, this is known as
the Bonferroni inequality because it is the one most frequently encountered in
practice.2 See Section 6.2 for a discussion of the use of this inequality in setting
levels of statistical significance for tests involving multiple comparisons.

Example. Referring to Section 2.1.4, assume that the probability of observing
six or more cases of leukemia in any single census tract is 0.007925. Let
P [Ai] be the probability of observing such an event in census tract i. Then the
probability of observing six or more cases of leukemia in at least one of six
census tracts is no greater than

P [Ai] + P [A2] + . . . + P [A6] = 6 × 0.007925 = 0.04755.

In Section 2.1.4, where there were only 12 cases in total, the joint probability of
finding six cases in two tracts is the minuscule 0.000006, and the probability of
this occurrence in three or more tracts is zero. Bonferroni’s first approximation
is extremely accurate in this case.

Example. Assume that a person is infected with a virus for which there are
two diagnostic tests. Let A = [diagnostic test 1 is positive], with P [A] = 0.95.
Let B = [diagnostic test 2 is positive], with P [B] = 0.99

What is the probability that the infected person would test positive on at least
one of the tests? By Bonferroni’s inequality P [A or B] ≤ 0.95 + 0.99 = 1.94.
Clearly this is not helpful. If the probability that both tests would be posi-
tive were 0.95 × 0.99 = 0.9405 (independent tests), then the probability of
the union would be 0.95 + 0.99 − 0.9405 = 0.9995. In this case the Bon-
ferroni approximation is not useful because the probability of the joint event

2This is Bonferroni’s first inequality. More generally, if A1, · · · , An are n events, the
probability of the union of A1, · · · , An is obtained as follows: first, take the sum of each
event separately,

∑

i P [Ai]; second, subtract the sum of all pairwise joint probabilities
∑

i ̸=j P [Ai ∩ Aj ] since the previous sum overestimates the union’s probability; next, add
back the sum of all joint probabilities in triples,

∑

i ̸=j ̸=k P [Ai ∩Aj ∩Ak], since the previous
step overcorrected slightly. Continue in this way by alternately subtracting and adding sums
of joint probabilities until one adds or subtracts the final term P [A1 ∩ · · · ∩ An]. At any
stage, the probability of the union may be approximated by the terms included up to that
point, incurring an error no larger than the magnitude of the first omitted term.
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FIGURE 3.1. Venn diagrams illustrating conjunction (“and”) and inclusive disjunction
(“and/or”)

is not negligible. In fact, Bonferroni’s inequality shows that P [AandB] must
be substantial, as follows. The probability that one or the other test shows a
false negative reading, P[Ā or B̄], is, by Bonferroni’s inequality, no greater than
P[Ā]+P[B̄] = 0.05+0.01 = 0.06, which is quite accurate because the probabil-
ity of two false negatives is very small (0.01×0.05 = 0.0005, for independent
tests). Taking complements implies that P[A and B] = P[ not (Ā or B̄)] =
1 − P[Ā or B̄] ≥ 1 − 0.06 = 0.94.

Intersection

• The intersection of two events, A and B, is their conjunction, A and B.

• The probability of A and B is no greater than the probability of either event
alone. This follows from the rule for mutually exclusive events, since

P [A] = P [A and B] + P [A and B̄] ≥ P [A and B].

• If eventB implies eventA then P [B] = P [A and B], whence P [B] ≤ P [A].
In words, an event is at least as likely to occur as any other event which
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implies it, and an event is no more likely to occur than any other event
which it implies.

Conditional probability

The conditional probability of an event A given an event B with P [B] > 0
is defined as P [A|B] = P [A and B]/P [B]. The conditional probability of A
given B is the relative likelihood of occurrence of A, among all times when B
occurs.

Example. Referring to the boy-girl family example at p. 57, the unconditional
probability of a boy-boy family (A) is P[A]= 1/4. The probability of a family
with at least one boy (B) is P[B]= 3/4. The probability of a boy-boy family
conditional on there being at least one boy (B) is P[A and B]/P[B]= 1/4÷3/4 =
1/3. In Mr. Baker’s case, the probability of the door-answering child being a
boy (C) is P[C]= 1/2. Hence, the probability of a boy-boy family conditional
on a boy answering the door is P[A and C]/P[C]=1/4 ÷ 1/2 = 1/2.

For non-vacuous events, one can always write the joint probability of events
A and B as

P [A and B] = P [A|B]P [B] = P [B|A]P [A],

although note that in general P [A|B] ̸= P [B|A]. In the preceding example,
P[A|B] = 1/3, but P[B|A] = 1.

Independent events

Events A and B are said to be independent if

P [A|B] = P [A] = P [A|B̄].

In words, A and B are independent if the occurrence (or non-occurrence) of B
does not affect the likelihood of occurrence of A. Thus, for independent events
we have the multiplication rule

P [A and B] = P [A|B] · P [B] = P [A] · P [B].

Averaging conditional probabilities

An overall probability equals a weighted average of conditional probabilities.
In symbols,

P [A] = P [A|B] · P [B] + P [A|B̄] · P [B̄].

The weights are given by P [B] and its complement. This follows by writing

P [A] = P [(A and B) or (A and B̄)]
= P [A and B] + P [A and B̄].

The conditional probabilities are often interpreted as specific rates.
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Example. The overall promotion rate P [A] in a company may be obtained
from the specific rates for black and non-black employees (respectively
P [A|B] and P [A|B̄]) by weighting the rates by the proportion of blacks and
non-blacks, P [B] and P [B̄].

3.1.1 Interracial couple in yellow car

In People v. Collins, 68 Cal. 2d 319, 438 P.2d 33 (1968)(en banc) an elderly
woman, while walking through an alley in the San Pedro area of Los Angeles,
was assaulted from behind and robbed. The victim said that she managed to
see a young woman with blond hair run from the scene. Another witness said
that a Caucasian woman with dark-blond hair and a ponytail ran out of the
alley and entered a yellow automobile driven by a black man with a mustache
and a beard.

A few days later, officers investigating the robbery arrested a couple on
the strength of these descriptions and charged them with the crime.3 It is not
clear what led police to the Collins couple. A police officer investigating the
robbery went to their house and took them to the police station, where they
were questioned, photographed, and then released. When police officers came
a second time to their house, apparently to arrest them, Malcolm was observed
running out the back and was found hiding in a closet in a neighboring house.
The officer found two receipts in Malcolm’s pocket, indicating that he had just
paid two traffic fines in a total amount equal to the amount of money stolen.
Questioned as to the source of the money, Malcolm and Janet gave conflicting
accounts. Finally, first Janet alone, and then the two together, engaged in a
bargaining session with police in an effort to have charges dismissed against
Malcolm, in particular, because he had a criminal record. Although no admis-
sions were made, the tone of the conversion, according to the appellate court,
“evidenced a strong consciousness of guilt on the part of both defendants who
appeared to be seeking the most advantageous way out.”

At their trial, the prosecution called an instructor of mathematics to estab-
lish that, assuming the robbery was committed by a Caucasian blonde with a
ponytail who left the scene in a yellow car driven by a black man with a beard
and mustache, the probability was overwhelming that the accused were guilty
because they answered to this unusual description. The mathematician testi-
fied to the “product rule” of elementary probability theory, which states that
the probability of the joint occurrence of a number of mutually independent
events equals the product of their individual probabilities. The prosecutor then
had the witness assume the following individual probabilities for the relevant
characteristics:

3When defendants were arrested, the woman’s hair was light, not dark, blond and the
man did not have a beard. There was some evidence that the man had altered his appearance
after the date on which the offense had been committed. The car was only partly yellow.
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(a) Yellow automobile 1/10
(b) Man with mustache 1/4
(c) Girl with ponytail 1/10
(d) Girl with blond hair 1/3
(e) Black man with beard 1/10
(f) Interracial couple in car 1/1000

Applying the product rule to the assumed values, the prosecutor concluded
that there was but one chance in twelve million that a couple selected at random
would possess all these incriminating characteristics. The prosecutor gratu-
itously added his estimation that the “chances of anyone else besides these
defendants being there ... having every similarity ... is somewhat like one in a
billion.” The jury convicted the defendants. On appeal, the Supreme Court of
California reversed, holding that the trial court should not have admitted the
evidence pertaining to probability.

In an appendix to the opinion, the court proposed a mathematical model
to prove that, even on the prosecution’s assumption that the probability that
a random couple would answer to the description of the Collins couple (a
“C-couple”) was 1 in 12,000,000, there was a 41% probability of there being
at least a second C-couple, if 12,000,000 selections were made. One way
of describing the court’s model involves imagining that there is a very large
population of couples in cars, with the rate of C-couples in that population
being 1 in 12,000,000. Out of this population one picks a couple at random,
checks whether it is a C-couple, returns it to the population, and picks again.
Assuming that one makes 12,000,000 selections to simulate the creation of
the population, count the number of C-couples picked. Repeat this process
many times and one finds that, in about 41% of these hypothetical populations
in which there appeared at least one C-couple, there was more than one. The
appendix concludes:

Hence, even if we should accept the prosecution’s figures without ques-
tion, we would derive a probability of over 40 percent that the couple
observed by the witnesses could be “duplicated” by at least one other
equally distinctive interracial couple in the area, including a Negro with
a beard and mustache, driving a partly yellow car in the company of a
blonde with a ponytail. Thus, the prosecution’s computations, far from
establishing beyond a reasonable doubt that the Collinses were the cou-
ple described by the prosecution’s witnesses, imply a very substantial
likelihood that the area contained more than one such couple, and that a
couple other than the Collinses was the one observed at the scene of the
robbery.

Id. 438 P. 2d at 42.

Questions

1. Are the identifying factors listed likely to be statistically independent?
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2. Suppose the frequency of identifying factors had been determined as fol-
lows: A survey was made of couples in cars and one in a thousand of them
was interracial. In one of ten of those interracial couples there was a black
man with a beard. In one of three interracial couples in which the black
man had a beard the woman had blond hair. And so forth for the rest of
the factors. In those circumstances would multiplication together of the
frequencies have been correct?

3. Assuming the 1 in 12,000,000 figure were correct as the probability of se-
lecting at random a couple with the specified characteristics, what objections
do you have to the prosecutor’s argument?

4. Assume, as in the appendix to the court’s opinion, that the couples who
might conceivably have been at the scene of the crime were drawn from
some larger population in which the rate of C-couples was 1 in 12,000,000.
Does it follow that the 41% probability computed in the appendix is relevant
to the identification issue?

5. Does the conclusion of the court’s appendix that the prosecutor’s compu-
tation implies a very substantial likelihood that a couple other than the
Collinses was the one observed at the scene of the robbery follow from the
preceding mathematical demonstration?

Source

Michael O. Finkelstein and William Fairley, A Bayesian Approach to Identifica-
tion Evidence, 83 Harv. L. Rev. 489 (1970), reprinted in Quantitative Methods
In Law, ch. 3 (1978); see also, William Fairley and Frederick Mosteller, A
Conversation About Collins, 41 U. Chi. L. Rev. 242 (1974).

Notes

The product rule has been involved in a number of cases both before and
after Collins.

In People v. Risley, 214 N.Y. 75, 108 N.E. 200 (1915), the issue was whether
defendant had altered a court document by typing in the words “the same.”
Defendant was a lawyer and the alteration helped his case. Eleven defects in
the typewritten letters on the court document were similar to those produced by
the defendant’s machine. The prosecution called a professor of mathematics
to testify to the chances of a random typewriter producing each of the defects
found in the words. The witness multiplied these component probabilities
together to conclude that the joint probability of all the defects was one in four
billion. On appeal the court reversed, objecting that the testimony was “not
based upon actual observed data, but was simply speculative, and an attempt
to make inferences deduced from a general theory in no way connected with
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the matter under consideration supply [sic] the usual method of proof.” Id. at
85, 108 N.E. at 203.

In Miller v. State, 240 Ark. 340, 399 S.W.2d 268 (1966), the expert testified
that dirt found on defendant’s clothing matched dirt at the burglary site as to
color, texture, and density and that the probability of a color match was 1/10,
a texture match was 1/100, and a density match was 1/1000. Multiplying these
together, the expert concluded that the probability of an overall match was
1/1,000,000. On appeal, the conviction was reversed. The expert’s testimony
as to probability was inadmissible because he had neither performed any tests,
nor relied on the tests of others, in formulating his probability estimates.

On the other hand, in Coolidge v. State, 109 N.H. 403, 260 A.2d 547 (1969),
the New Hamphire Supreme Court cited Collins, but came to a different con-
clusion. The expert in that case obtained particles by vacuuming the victim’s
clothes and the defendant’s clothes and automobile (where the crime was be-
lieved to have taken place). Forty sets of particles (one from the victim and
the other from the defendant) were selected for further testing on the basis of
visual similarity under a microscope. In these further tests the particles in 27
of the 40 sets could not be distinguished. Previous studies made by the expert
indicated that “the probability of finding similar particles in sweepings from
a series of automobiles was one in ten.” The expert concluded that the prob-
ability of finding 27 similar particles in sweepings from independent sources
would be only one in ten to the 27th power. On cross-examination, the expert
conceded that all 27 sets may not have been independent of one another, but
the court found that this went to weight rather than admissibility and affirmed
the conviction.

3.1.2 Independence assumption in DNA profiles

We continue the discussion of DNA profiles that was begun in Section 2.1.1.
In forensic science applications, a sample of DNA that is connected with the

crime is compared with the suspect’s DNA. For example, in a rape case, DNA
in semen found in the victim may match the suspect’s DNA (which would be
incriminating) or may not (which would be exculpatory). If there is a match,
its forensic power depends on the probability that such a profile would have
been left by a randomly selected person, if the suspect was not responsible.
This in turn depends on the frequency of matching profiles in the population
of persons who could have left the trace.

To estimate such frequencies, DNA laboratories begin with the frequency
of the observed allele at each locus included in the profile. Each heterozygous
genotype frequency is determined by multiplying together the frequencies of
the maternal and paternal alleles that constitute the genotype, and multiplying
that product by two. For homozygous genotypes, the frequency of the observed
allele should be squared. The independence assumption that underlies the mul-
tiplications is justified on the belief that people mate at random, at least with
respect to VNTR alleles, which are not known to correspond to any observable
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trait. However, the same assumption is made for PCR alleles, which may in-
volve observable traits. A population whose genotypes are in these proportions
is said to be in Hardy-Weinberg (HW) equilibrium.

Genes that are on the same chromosome are linked, that is, they tend to be
inherited together. However, during the formation of a sperm or egg, the two
members of a chromosomal pair lined up side by side can randomly exchange
parts, a process called crossing over or recombination. Genes that are very
close together on the same chromosome may remain associated for many
generations while genes that are far apart on the same chromosome or on
different chromosomes become randomized more rapidly.

To arrive at an overall frequency for a multilocus genotype, it is usual to
take the product of the frequencies of the genotypes at the separate loci. This is
justified on the assumption that genotypes at different loci are independent. A
population in such a state is said to be in linkage equilibrium (LE). The state of
LE, like HW, is the result of random mating, but a population only arrives at LE
after several generations, whereas HW is arrived at in one generation. Because
of recombination, loci that are close together on the same chromosomal pair
approach LE more slowly than those far apart on the same pair or on different
pairs. Departure from LE is called linkage disequilibrium, and is an important
tool for locating marker genes close to true disease genes.

It has been objected that frequencies of apparent homozygotes will be greater
than expected under HW if either (i) there are subgroups in the population
that tend to in-breed and have higher rates of the particular alleles observed
as homozygotes, or (ii) only a single band is found at a locus because the
autorad band for the other allele erroneously has been missed. To protect against
these possibilities, some laboratories conservatively estimate the frequency of a
homozygote as twice the frequency of the observed allele, instead of the square
of its frequency. This change will generally favor defendants by increasing the
estimated frequency of matching homozygous genotypes in the population.

To test the HW assumption, Table 3.1.2 shows allele frequencies for 3 out of
28 different alleles found at locus D2A44 in samples of varying sizes from four

TABLE 3.1.2. Numbers of three alleles at locus D2S44 in samples from four populations

Allele type Canadian Swiss French Spanish Total alleles
(i) by type
...
9 130 100 68 52 350
10 78 73 67 43 261
11 72 67 35 48 222
...

Total
alleles/sample 916 804 616 508 2844
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white populations–Canadian, Swiss, French, and Spanish. Presumably there is
not extensive mating at random across these populations so that hypothetical
combined populations (e.g., the U.S. white population) would be vulnerable
to departures from HW.

Questions

1. To arrive at an average figure for a total population consisting of the four
subpopulations combined, compute the weighted average frequency of the
homozygous genotype consisting of allele 9 (without adjustment for the risk
of missing a band) and the heterozygous genotypes consisting of alleles 9
and 10 across the four subpopulations, with weights proportional to the
sizes of the subpopulation samples. (These calculations assume that there
is mating at random within each subpopulation, but not necessarily across
subpopulations.)

2. Compute the frequency of the same alleles using the total population figures.
(These calculations assume that there is mating at random within and across
the subpopulations.)

3. Compare the results. Is HW justified?

4. Since there is not, in fact, mating at random across these subpopulations,
what is a sufficient condition for HW in the total population, given HW in
each of the subpopulations?

5. Consider a hypothetical population comprised of Canadians and non-
Canadians in equal numbers. The Canadians have allele 9 frequency
130/916 as in Table 3.1.2, but the non-Canadians have allele frequency
786/916. Assuming that HW holds for Canadians and non-Canadians
separately and they don’t intermarry, does HW hold in the combined
population?

Source

Federal Bureau of Investigation, VNTR population data: a worldwide survey,
at 461, 464-468, reprinted in National Research Council, The Evaluation of
Forensic DNA Evidence, Table 4.5 at 101 (1996).

Notes

DNA profiling has been subject to searching criticism by professional groups
and in the courts, but its value is now well established. The National Research
Council Report is one of many discussions of this subject. See, e.g., Faigman,
et al., Modern Scientific Evidence, ch. 47 (1997).
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3.1.3 Telltale fibers

Defendant Wayne Williams was charged with the murders of two young black
males in Atlanta, Georgia. There had been ten other similar murders. Critical
evidence against Williams consisted of a number of fibers found on the bodies
that resembled fibers taken from his environment, in particular, certain unusual
trilobal Wellman 181-b carpet fibers dyed English Olive. A prosecution expert
testified that this type of fiber had been discontinued and that, on conservative
assumptions, there had been only enough sold in a ten-state area to carpet 820
rooms. Assuming that sales had been equal in each of the ten states, that all
Georgia carpet had been sold in Atlanta, and that only one room per house
was carpeted, 81 Atlanta homes had carpet containing this fiber. Because,
according to the expert, there were 638,992 occupied housing units in Atlanta,
the probability that a home selected at random would have such carpeting was
less than 81/638,992 or 1 in 7,792. Wayne Williams’s bedroom had carpet with
this fiber (although defendant subsequently disputed this).

Based on this testimony, the prosecutor argued in summation that “there
would be only one chance in eight thousand that there would be another house
in Atlanta that would have the same kind of carpeting as the Williams home.”
Williams was convicted. On appeal, the Georgia Court of Appeals held that
the state’s expert was entitled to discuss mathematical probabilities, that coun-
sel in closing argument was not prohibited from suggesting inferences to be
drawn from the evidence, and that such inferences might include mathematical
probabilities.

Questions

1. Is the prosecutor’s argument correct?

2. Does the 1 in 7,792 figure imply that there is 1 chance in 7,792 that the
fibers did not come from Williams’s home?

3. Should the evidence have been excluded because by itself (no other evidence
being considered), the probability of guilt it implies is no more than 1 in
81?

Source

Williams v. State, 251 Ga. 749, 312 S.E.2d 40 (1983).

3.1.4 Telltale hairs

State v. Carlson, 267 N.W.2d 170 (Minn. 1978).
Defendant Carlson was charged with murdering a 12-year old girl who had last
been seen in his company. Investigating officers found two foreign pubic hairs
stuck to the skin of the deceased in her groin area and head hairs clutched in
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her hand. Gaudette, an expert on hair comparisons, testified that the pubic and
head hairs found on the victim microscopically matched those of the accused.
Based on a study he had done a few years earlier [the Gaudette-Keeping study
described below] for the pubic hair the “chances those hairs did not come
from David Carlson would be on the order of 1 chance in 800 for each hair,”
and for the head hair the figure was 1 in 4,500. Carlson was convicted. On
appeal, the Supreme Court of Minnesota found that Gaudette’s testimony on
mathematical probabilities was improperly received because of “its potentially
exaggerated impact on the trier of fact,” but affirmed the conviction because
the evidence was merely “cumulative and thus nonprejudicial on the facts of
the case.”

State v. Massey, 594 F.2d 676 (8th Cir. 1979).

Defendant Massey was charged with bank robbery. The robber wore a blue ski
mask and a similar mask was recovered from the house of Massey’s associate.
At his trial, an FBI expert testified that three out of five hairs found in the mask
were microscopically similar to one or more of nine mutually dissimilar hairs
taken from Massey’s scalp.4 Under questioning by the judge, the expert testified
that he had examined over 2,000 cases and that “only on a couple of occasions”
had he seen hairs from two different individuals that he “could not distinguish.”
He also made reference to the Gaudette-Keeping study, which found, as he
described it, “that a possibility that a hair which you have done or matched
in the manner which I have set forth, there’s a chance of 1 in 4,500 these
hairs could have come from another individual.” In summation, the prosecutor
argued that, assuming there were as many as 5 instances out of 2,000 in which
hairs from different individuals could not be distinguished, the accuracy was
better than 99.44% and thus constituted proof of guilt beyond a reasonable
doubt. Massey was convicted. The court of appeals reversed the conviction,
holding that the prosecutor had “confused the probability of occurrence of the
identifying marks with the probability of mistaken identification of the bank
robber.” It also followed Carlson in objecting to the evidence because of its
“potentially exaggerated impact upon the trier of fact.”

Gaudette-Keeping study

The unwillingness of the courts to accept population frequency evidence in
Carlson and Massey may have been due in part to, or at least justified by,
the weaknesses of the underlying studies on which the estimates were based.
The Gaudette-Keeping study to which the experts referred had been conducted
several years earlier and used the following methodology. A sample of 80 to

4It is unclear how a hair could be similar to more than one of nine mutually dissimilar
hairs.
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100 hairs “randomly selected” from various parts of the scalps of 100 sub-
jects was reduced to a subsample of 6 to 11 representative hairs from each
subject (861 in all). Investigators examined every inter-person pair of hairs
macroscopically and microscopically. Only 9 inter-person pairs were found
indistinguishable. The investigators knew, however, that hairs from different
people were involved. According to Gaudette, hair comparisons are somewhat
subjective, and when experiments included “common featureless hairs,” inves-
tigators were unable to distinguish a much higher proportion of hairs than in
the original study. Nevertheless, Gaudette concluded in testimony in Carlson
that “if nine dissimilar hairs are independently chosen to represent the hair
on the scalp of Individual B, the chance that the single hair from A is distin-
guishable from all nine of B’s may be taken as (1 − (1/40,737))9, which is
approximately 1 − (1/4500).”

Questions

1. Do you see how Gaudette-Keeping derived their estimate of 1/4500 as the
probability of being unable to distinguish a hair selected at random from
any of 9 selected from a subject? What assumptions underlie the method of
calculation?

2. Assuming the study results were accurate and representative, what two
possible meanings are attributable to the expert’s conclusion? Which is
validly deducible without other assumptions from the study?

3. What issues would you explore on cross-examination or in rebuttal
testimony with respect to the validity of the study?

Source

Gaudette’s studies were reported in B. D. Gaudette and E. S. Keeping, An At-
tempt at Determining Probabilities in Human Scalp Comparison, 19 J. Forensic
Sci. 599 (1974); Probabilities and Human Pubic Hair Comparisons, 21 id. 514
(1976); Some Further Thoughts on Probabilities and Human Hair Compar-
isons, 23 id. 758 (1978). Gaudette’s work was criticized by P. D. Barnett and
R. R. Ogle in Probabilities and Human Hair Comparison, 27 id. 272 (1982).
Despite the weaknesses of the underlying studies, forensic hair analysis has
rarely been rejected by the courts. For a discussion of the cases and the studies,
see Clive A. Stafford Smith & Patrick Goodman, Forensic Hair Comparison
Analysis: Nineteenth Century Science or Twentieth Century Sham?, 27 Colum.
Hum. Rts. L. Rev. 227 (1996).

Notes

Carlson was not a fluke—in Minnesota. In State v. Boyd, 331 N.W. 2d 480
(1983), the Minnesota Supreme Court followed Carlson, but added some new
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reasons for excluding population frequency statistics. It held that a population
frequency statistic of less than 1 in 1,000 should not have been admitted in
evidence because of a “real danger that the jury will use the evidence as a
measure of the probability of defendant’s guilt or innocence, and that evidence
will thereby undermine the presumption of innocence, erode the values served
by the reasonable doubt standard, and dehumanize our system of justice.” Id.
at 483. Boyd was followed in State v. Kim, 398 N.W.2d 544 (1987) (population
frequency less than 3.6%) and, with specific reference to DNA profiling, in
State v. Schwartz, 447 N.W.2d 422 (1989).

The Minnesota legislature responded to the trilogy of cases ending with
Kim by passing an act providing that: “In a civil or criminal trial or hearing,
statistical population frequency evidence, based on genetic or blood test results,
is admissible to demonstrate the fraction of the population that would have
the same combination of genetic marks as was found in a specific human
biological specimen.” Minn. Stat. §634.26 (1992). In subsequent rape cases,
the Minnesota Supreme Court ignored the statute and opted for a “black box”
approach: quantification of random match probabilities for DNA profiles may
not be presented to the jury, although an expert may use them as the basis for
testifying that, to a reasonable scientific certainty, the defendant is (or is not)
the source of the bodily evidence found at the crime scene. See, e.g., State v.
Bloom, 516 N.W.2d 159 (1994). Is this a reasonable solution to the problems
of misinterpretation noted by the Minnesota Supreme Court?

The position of the Minnesota Supreme Court, as articulated in Boyd, is an
extension to population frequency statistics of an argument by Professor Lau-
rence Tribe against the use of Bayes’s theorem in evidence. See Section 3.3.2
at p. 79. In his article, Professor Tribe objected to quantification of guilt, which
Bayes’s theorem could in some applications require, but did not go so far as to
advocate the exclusion of population frequency statistics.5 Most courts have
not followed the Minnesota Supreme Court on this issue. The conclusion of
Judge Easterbrook in his opinion in Branion v. Gramly, 855 F.2d 1256 (7th Cir.
1988), seems more reasonable and probably represents the dominant view:

Statistical methods, properly employed, have substantial value.
Much of the evidence we think of as most reliable is just a compendium
of statistical inferences. Take fingerprints. The first serious analysis of
fingerprints was conducted by Sir Francis Galton, one of the pioneering
statisticians, and his demonstration that fingerprints are unique depends
entirely on statistical methods. Proof based on genetic markers (critical
in rape and paternity litigation) is useful though altogether statistical.
So, too, is evidence that, for example, the defendant’s hair matched hair

5The introduction of population frequency statistics, without Bayes’s theorem, does not
require jurors to come up with a numerical probability of guilt, but the Minnesota Supreme
Court equated the Bayesian and non-Bayesian scenarios by focusing on the risk that jurors
would misread the population statistics as just such a quantification.
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found at the scene of the crime. None of these techniques leads to inac-
curate verdicts or calls into question the ability of the jury to make an
independent decision. Nothing about the nature of litigation in general,
or the criminal process in particular, makes anathema of additional in-
formation, whether or not that knowledge has numbers attached. After
all, even eyewitnesses are testifying only to probabilities (though they
obscure the methods by which they generate those probabilities) – often
rather lower probabilities than statistical work insists on.

Id. at 1263–1264 (citations omitted).

3.2 Selection effect

Suppose that in Williams v. State, section 3.1.3, a fiber found on one of the
bodies was compared with fibers found in the apartment of the defendant. If
the defendant did not leave the fiber, the chance of matching a pre-selected fiber
is 1/100. But if there are 50 distinct fibers in defendant’s apartment (each with
a 1/100 chance of matching), and the fiber found on the body is compared with
each, the probability of one or more matches is 1−0.9950 = 0.395. In Coolidge
v. State, p. 66, since the 40 pairs of particles were apparently chosen from a
larger group on the basis of visual (microscopic) similarity, the probability of
a random match in the data might be much higher than the 10% rate reported
for studies that did not use a visual similarity screening criterion. A great deal
may thus depend on the way attempts to match characteristics are made and
reported, a phenomenon sometimes referred to as “selection effect.”

3.2.1 L’affaire Dreyfus

In the 1899 retrial of the 1894 secret court-martial of Alfred Dreyfus, Cap-
tain in the French General Staff, the prosecution again sought to prove that
Dreyfus was the author of a handwritten bordereau (note) that transmitted five
memoranda purportedly containing secret military information to the German
ambassador in Paris. This bordereau was among a package of papers that a
charwoman, in the pay of French intelligence, delivered to her employers,
claiming that she discovered it (the bordereau torn to pieces) in the ambas-
sador’s wastebasket. The famous criminologist Alphonse Bertillon testified
that there were suspicious coincidences of the initial and final letters in four of
the thirteen polysyllabic words in the bordereau. Evaluating the probability of
such a coincidence in a single word in normal writing as 0.2, Bertillon argued
that the probability of four sets of coincidences was 0.24 = 0.0016 in normal
writing. This suggested to him that the handwriting of the document was not
normal, which connected with a prosecution theory that Dreyfus had disguised
his own handwriting to conceal his authorship. A divided military court again
found Dreyfus guilty of treason, but this time with extenuating circumstances.
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Questions

1. Given the assumed probability of coincidence in a single word as 0.2, exactly
what probability did the expert compute?

2. If a high number of coincidences in the thirteen polysyllabic words
were somehow indicative of contrived handwriting, compute a relevant
probability under the assumption that the handwriting was not contrived.

Source

Laurence H. Tribe, Trial by Mathematics: Precision and Ritual in the Legal
Process, 84 Harv. L. Rev. 1329, 1333-34 (1971); Rapport de MM. Darboux,
Appell et Poincaré, in L’affaire Dreyfus: La Révision du Procés de Rennes,
Enquête 3 at 501 (1909).

Notes

The 1899 verdict was widely recognized as a manifest injustice; there was an
international outcry and Dreyfus was immediately pardoned on health grounds.
The Dreyfus family eventually obtained review of the court martial by the civil
court of appeals. As part of its investigation, the court requested the Academie
des Sciences to appoint an expert panel to examine and report on the expert
evidence. The panel–which included Henri Poincaré, a famous professor of the
calculus of probabilities at the Sorbonne–pronounced it worthless. They added
that “its only defense against criticism was its obscurity, even as the cuttle-fish
cloaks itself in a cloud of ink in order to elude its foes.” Armand Charpentier,
The Dreyfus Case 226 (J. Lewis May translated 1935). In 1906, the court
exonerated Dreyfus and annulled the 1899 verdict. In the end, having endured
five years on Devil’s Island, Dreyfus was restored to the army, promoted to
major, and decorated with the Legion d’Honneur.

3.2.2 Searching DNA databases

According to the 1996 Report of the Committee on DNA of the National Re-
search Council, in criminal investigations more than 20 suspects have already
been initially identified by computerized searches through DNA databases
maintained by various states. As the number and size of such databases in-
crease, it is likely that initial identifications will more frequently be made on
this basis. In its report, the Committee on Forensic DNA Science of the Na-
tional Research Council stated that in such cases the usual calculation of match
probability had to be modified. It recommended as one of two possibilities that
the calculated match probability be multiplied by the size of the data base
searched.
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Questions

1. Explain the theory of such a calculation by reference to Bonferroni’s
inequality (see Section 3.1 at p. 57).

2. What is the probability computed with such an adjustment? Is it relevant to
the identification issue?

3. What is the difference between this case and the fiber matching problem
referred to in Section 3.2?

4. After reading Section 3.3 on Bayes’s theorem, consider the following: Sup-
pose that after the initial identification based on a computerized search,
specific evidence is discovered that would have been sufficient to have the
suspect’s DNA tested if the specific evidence had been discovered first.
Does it make any difference to the strength of the statistical evidence that
it was used before or after the specific evidence was discovered? Suppose
the specific evidence was very weak or even exculpatory so that it would
not have led to a testing of the suspect’s DNA. How would that affect the
probative force of the statistical evidence?

5. Should the adjustment recommended by the Committee be made?

Source

National Research Council, The Evaluation of Forensic DNA Evidence 32
(1996). For criticisms of the Committee’s position see Peter Donnelly and
Richard D. Freedman, DNA Database Searches and the Legal Consumption
of Scientific Evidence, 97 Mich. L. Rev. 931 (1999).

3.3 Bayes’s theorem

Bayes’s theorem is a fundamental tool of inductive inference. In science, as
in law, there are competing hypotheses about the true but unknown state of
nature and evidence that is more or less probable depending on the hypothesis
adopted. Bayes’s theorem provides a way of combining our initial views of
the probabilities of the possible states of nature, with the probabilities of the
evidence to arrive at posterior probabilities of the states of nature, given the
evidence. It is thus a way of reasoning “backward” from effects to their causes.

In mathematical notation, Bayes’s theorem shows how a set of conditional
probabilities of the form P (Bi |Aj ) may be combined with initial or prior
probabilities P (Ai) to arrive at final or posterior probabilities of the form
P (Ai |Bj ), wherein the roles of conditioning event and outcome event have
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been interchanged.6 In the case of discrete events, Bayes’s theorem is easily
derived. By definition, P (Ai |Bj ) = P (Ai and Bj )/P (Bj ). The joint probabil-
ity P (Ai and Bj ) may be written P (Bj |Ai)P (Ai) and, similarly, the marginal
probability P (Bj ) may be written as P (Bj ) =

∑

i P (Bj |Ai)P (Ai), the sum
taken over all possible states of nature Ai (see Section 3.1). Thus we have

P (Ai |Bj ) =
P (Bj |Ai)P (Ai)

∑

i P (Bj |Ai)P (Ai)
·

In the case of only two states of nature, say A and not-A (Ā), the result is:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ā)P (Ā)
·

A more enlightening formulation is in terms of odds:

P (A|B)

P (Ā|B)
=

P (A)

P (Ā)
× P (B|A)

P (B|Ā)
.

(1) (2) (3)

In words, this says that (1) the posterior odds on the truth of state A as opposed
to not-A given evidence B are equal to (2) the prior odds on A times (3) the
likelihood ratio for B, i.e., the ratio of the probability of B given A and not-A.
Thus, the probative force of evidence is an increasing function of both the prior
odds and the likelihood ratio.

Bayes’s theorem honors the Rev. Thomas Bayes (1702-61), whose result
was published posthumously in 1762 by Richard Price in the Philosophical
Transactions. In Bayes’s paper, the prior probability distribution was the uni-
form distribution of a ball thrown at random on a billiard table. While Bayes’s
original example utilized a physical prior probability distribution, some more
controversial applications of Bayes’s theorem have involved subjective prior
probability distributions. See Section 3.3.2.

Although prior odds are usually subjective, sometimes they are objective and
can be estimated from data. An intriguing example of objective calculation of
a prior probability was Hugo Steinhaus’s computation for paternity cases. See
Steinhaus, The Establishment of Paternity, Prace Wroclawskiego Towarzystwa
Naukowego, ser. A., No. 32, at 5 (1954).

The background, or prior, probability computed by Steinhaus was the prob-
ability that the accused was the father after intercourse had been established,
but before serological test results were known. The posterior probability was

6The difference between these events can be made clear from an example attributed to
Keynes. If the Archbishop of Canterbury were playing in a poker game, the probability that
he would deal himself a straight flush, given honest play on his part, is not the same as the
probability of honest play on his part, given that he has dealt himself a straight flush. The
first is 36 in 2,598,960; the second most people think would be much larger, perhaps close
to 1. Would the same result apply to the cardsharping Cardinal Riario?
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the probability of paternity given the test results. A significant aspect of Stein-
haus’s procedure was his use of population statistics to estimate the proportion
of guilty fathers among those designated for the test, even though no indi-
viduals (except those subsequently exonerated by the test) could be identified
as guilty or innocent. For the sake of clarifying his theory, we simplify it
slightly.

Different blood types occur with different frequencies in the population. Let
the type in question be called “A” and have frequency f ; the frequency of those
who do not have this type is 1 −f . Consider the group of accused fathers who
take the serological test because the child has blood type A, one not shared by
the mother. If the mothers’ accusations were always right, the serological test
would show that every member of this group had type “A” blood (although
the converse, of course, is not true). If the mothers’ accusations were always
wrong, the members of this group would constitute a random sample from
the population with respect to blood type, and the expected frequency of those
with blood types other than A would be 1−f . The disparity between the actual
rate of type A blood in this accused group and the population rate measures
the overall accuracy of the accusations. The higher the proportion of men with
type A blood, the more correct the accusations.

Let p be the proportion of the accused group who are fathers. Then 1 − p
is the proportion of unjustly accused men and (1 − p)(1 − f ) is the expected
proportion of those unjustly accused whom the test will exonerate. The ratio
of the expected proportion of the exonerated group to the proportion of the
general population who do not have blood type A is (1 − p)(1 − f )/(1 − f ),
or simply 1 − p, the prior probability of a false accusation. The importance
of this ratio is that both its numerator and denominator can be estimated from
objective sample and population statistics.

Using the results of 1,515 Polish paternity cases in which serological tests
had been administered, Steinhaus concluded that the prior probability of a true
accusation was about 70 percent. (With perhaps less than complete fairness,
this factor has been called “the veracity measure of women.”) The 70 percent
figure may be regarded as the background probability in paternity cases. It
was, however, computed from a subgroup of paternity cases, including only
those cases in which the child did not share the blood type of the mother,
requiring a serological test to establish paternity. Nevertheless, it seems fair
to test the attributes of various decision rules by this subgroup because it is
probably a random sample with respect to the fact of paternity; at the very
least there are not more paternities among defendants in this group than in the
larger group.

3.3.1 Rogue bus

On a rainy night, a driver is forced into a collision with a parked car by a
swerving bus that does not stop. There are two bus lines that travel the street:
Company A has 80% of the buses; company B has 20% of the buses. Their
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schedules shed no light on the culprit company. An eyewitness says it was
company B’s bus, but eyewitness testimony under sub-optimal conditions such
as those prevailing here (rainy night, speeding bus) is known to have a high
error rate.

Questions

1. In a civil suit by the injured driver against company A, is the statistical
evidence that company A has 80% of the buses sufficient to satisfy plaintiff’s
burden of proof by a preponderance of the evidence that it was company
A’s bus? In the Smith case cited below, the court held (quoting Sargent
v. Massachusetts Accident Co., 307 Mass. 246, 250, 29 N.E.2d 825, 827
(1940)) that the evidence must be such as to produce “actual belief” in the
event by the jury, and statistical evidence could only produce probabilities,
not actual belief. Do you agree that this is a valid reason for concluding that
statistical evidence is per se insufficient?

2. If suit is also brought against company B, is the eyewitness’s testimony
sufficient to satisfy plaintiff’s burden of proof that it was company B’s bus?

3. If the statistical evidence is insufficient but the eyewitness testimony is
sufficient, how do you reconcile those results?

4. Assume that the eyewitness testimony has a 30% error rate. Treating the
statistical evidence as furnishing the prior odds, and the eyewitness testi-
mony as supplying the likelihood ratio, use Bayes’s theorem to combine
the statistical and eyewitness evidence to determine the probability, given
the evidence, that it was company B’s bus.

Source

Cf. Smith v. Rapid Transit, Inc., 317 Mass. 469, 58 N.E.2d 754 (1945). For a
discussion of some other early cases on this subject, see Quantitative Methods
in Law 60-69.

Notes

Whether “naked” statistical evidence (i.e., statistical evidence without case-
specific facts) can be sufficient proof of causation in a civil or criminal case
has provoked extensive academic discussion, with the professorial verdict usu-
ally being negative, at least in criminal cases. The arguments are criticized in
Daniel Shaviro, Statistical-Probability Evidence and the Appearance of Jus-
tice, 103 Harv. L. Rev. 530 (1989). For criminal cases, the discussion has
been conducted on the level of law-school hypotheticals, because in real cases
there is always case-specific evidence to supplement the statistics. For civil
cases, statistics have been held to be sufficient evidence of causation when
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that has seemed necessary to do justice. The outstanding example is the di-
ethylstilbestrol (DES) litigation, in which the DES manufacturers were held
proportionately liable, based on their market shares, to plaintiffs whose moth-
ers had taken DES during pregnancy, even though there was no case-specific
evidence of which company’s DES the mother had taken. Sindell v. Abbott
Labs, Inc, 26 Cal.3d 588, 607 P.2d 924 (1980), cert. denied, 449 U.S. 912
(1980); Hymowitz v. Lilly & Co., 73 N.Y.2d 487 (1989).

3.3.2 Bayesian proof of paternity

A New Jersey statute criminalizes sexual penetration when the defendant has
supervisory or disciplinary power by virtue of his “legal, professional or oc-
cupational status” and the victim is on “probation or parole or is detained in a
hospital, prison or other institution.” Defendant was a black male corrections
officer at the Salem County jail where the female victim was incarcerated on
a detainer from the Immigration and Naturalization Service. The victim con-
ceived a child while in custody. If defendant was the father he was guilty of a
crime, irrespective of the victim’s consent.

In contested paternity proceedings, prior to the advent of DNA testing, the
parties were frequently given Human Leukocyte Antigen (HLA) tests to iden-
tify certain gene-controlled antigens in the blood. After making HLA tests,
an expert witness for the state testified that the child had a particular set of
genes that was also possessed by the defendant, but not by the mother. She
further testified that the frequency of this particular set of genes was 1% in the
North American black male population. The expert assumed that the odds of
defendant being the father, quite apart from the HLA tests, were 50-50 and,
based on that assumption and the 1% frequency of the gene type, concluded
that “the likelihood of this woman and this man producing this child with all
of the genetic makeup versus this woman with a random male out of the black
population . . . [results in] a probability of paternity of 96.55 percent.”

Questions

1. Was the expert’s testimony on the probability of paternity properly
admitted?

2. Was the restriction to the rate of the haplotype in the black population
warranted?

3. If the expert had proposed to give the jurors a hypothetical range of prior
probabilities and the posterior probability associated with each prior, should
her testimony have been admitted?

Source

State v. Spann, 130 N.J. 484, 617 A.2d 247 (Sup. Ct. N.J. 1993).
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Notes

Whether Bayes’s theorem should be explicitly used as suggested in Question
3 has been the subject of considerable academic and some judicial debate.
On the academic side, among the first articles are Michael O Finkelstein &
William Fairley, A Bayesian Approach to Identification Evidence, 83 Harv. L.
Rev. 489 (1970)(proposing the use of Bayes’s theorem); Laurence H. Tribe,
Trial by Mathematics:Precision and Ritual in the Legal Process, 84 Harv. L.
Rev. 1329 (1971) (criticizing the proposal); Finkelstein & Fairley, A Comment
on “Trial by Mathematics,” 84 Harv. L. Rev. 1801 (responding to Tribe);
and Tribe, A Further Critique of Mathematical Proof, 84 Harv. L. Rev. 1810
(1971) (rejoinder). A further critique appears in L. Brilmayer & L. Kornhauser,
Review: Quantitative Methods and Legal Decisions, 46 U. Chi. L. Rev. 116
(1978). See generally two symposia: Probability and Inference in the Law of
Evidence, 66 B. U. L. Rev. 377-952 (1986) and Decision and Inference in
Litigation, 13 Cardozo L. Rev. 253-1079 (1991). On the judicial side, compare
Plemel v. Walter, 303 Ore. 262, 735 P.2d 1209 (1987) and State v. Spann, supra
(both approving an explicit use) with Connecticut v. Skipper, 228 Conn. 610,
637 A.2d 1104 (1994) (disapproving an explicit use).

Those approving an explicit use in a criminal case argue that jurors tend to
underestimate the probative force of background statistical evidence. Such in-
sensitivity to prior probability of outcomes appears to be a general phenomenon
in subjective probability estimation. See, e.g., Judgement Under Uncertainty:
Heuristics and Biases, at 4-5 (Daniel Kahneman, Paul Slovic & Amos Tversky,
eds., 1982). Empirical studies based on simulated trials tend to support this.
See, e.g., Jane Goodman, Jurors’ Comprehension and Assessment of Proba-
bilistic Evidence, 16 Am. J. Trial Advocacy 361 (1992). They also point to
what is called the prosecutor’s fallacy: the risk that the jury will misinterpret
the low population frequency of the blood type as the probability of innocence.
Those opposed to explicit use object that jurors would be invited to estimate
a probability of guilt before hearing all the evidence, which they view as in-
consistent with the presumption of innocence and the instruction commonly
given to jurors to withhold judgement until all the evidence is heard. On the
other hand, if the jurors wait until they hear all the evidence before estimating
their priors, the statistics are likely to influence those estimates. Some scholars
further object to any juror quantification of the probability of guilt as inconsis-
tent with the “beyond a reasonable doubt” standard for criminal cases. Since
conviction is proper despite some doubt, it is not clear why quantification of
that doubt by a juror would be per se objectionable. There is some evidence
that quantification of the burden of proof influences verdicts in an appropri-
ate direction. Dorothy K. Kagehiro & W. Clark Stanton, Legal vs. Quantified
Definitions of Standards of Proof, 9 L. & Hum. Behav. 159 (1985).

Perhaps the strongest case for an explicit use by the prosecution arises if the
defense argues that the trace evidence does no more than place defendant in a
group consisting of those in the source population with the trace in question.
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Known as the defense fallacy, the argument assumes that without the trace de-
fendant is no more likely to be guilty than anyone else in the source population.
(This is an unlikely scenario since there is almost always other evidence that
implicates the defendant.) The prosecution might then be justified in using
Bayes’s theorem to show what the probabilities of guilt would be if the ju-
rors believed at least some of the other evidence. Conversely, the prosecutor’s
fallacy (that the frequency of the trace in the population is the probability of
innocence) assumes that the prior probability of defendant’s guilt is 50%. If
the prosecutor makes such an argument, the defense should then be justified,
using Bayes’s theorem, to demonstrate what the probabilities would be if some
or all of the other evidence were disbelieved.

Another set of issues is presented if identifying the source of the trace does
not necessarily imply guilt. A thumb print on a kitchen knife, used as a murder
weapon, may have been left there innocently. The complication here is that
the same facts suggesting guilt that are used to form the prior probability of
authorship of the print would also be used to draw an inference from authorship
of the print to guilt. If this is an impermissible double use, it would be hard or
impossible to partition the non-statistical evidence among uses.

Whether an explicit use of Bayes’s theorem is allowed in the courtroom may
stir legal academics more than jurors. In one empirical study the jurors simply
disregarded the expert’s Bayesian explanations of the statistics. See David L.
Faigman & A. J. Baglioni, Jr., Bayes’ Theorem in the Trial Process: Instructing
Jurors on the Value of Statistical Evidence, 12 Law & Hum. Behav. 1 (1988).
The more important (and often ignored) teaching of Bayes’s theorem is that
one need not assert that a matching trace is unique or nearly unique in a suspect
population to justify its admission as powerful evidence of guilt.

3.4 Screening devices and diagnostic tests

Screening devices and diagnostic tests are procedures used to classify indi-
viduals into two or more groups, utilizing some observable characteristic or
set of characteristics. Most familiar examples come from medical diagnosis of
patients as “affected” or “not affected ” by some disease. For our discussion
we adopt the clinical paradigm, but the central ideas are by no means limited
to that context.

False positives and negatives

No diagnostic test or screening device is perfect. Errors of omission and
commission occur, so we need to distinguish between the true status (say,
A = affected or U = unaffected) and the apparent status based on the test
(say, + = test positive or − = test negative). A false positive diagnosis is the
occurrence of a positive outcome (+) in an unaffected person (U ); it is denoted


