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Abstract Some explanations appeal to facts about the causal structure of a system
in order to shed light on a particular phenomenon; these are explanations which do
more than cite the causes X and Y of some state-of-affairs Z , but rather appeal to
“macro-level” causal features—for example the fact that A causes B as well as C ,
or perhaps that D is a strong inhibitor of E—in order to explain Z . Appeals to these
kinds of “macro-level” causal features appear in a wide variety of social scientific and
biological research; statements about features such as “patriarchy,” “healthcare infras-
tructure,” and “functioning DNA repair mechanism,” for instance, can be understood
as claims about what would be different (with respect to some target phenomenon) in a
systemwith a different causal structure. I suggest interpreting counterfactual questions
involving structural features as questions about alternative parameter settings of causal
models, and propose an extension of the usual interventionist framework for causal
explanation which enables scientists to explore the consequences of interventions on
“macro-level” structure.

Keywords Causation · Intervention · Counterfactuals · Explanation

1 Introduction

The existence of certain causal dependencies seems to be explanatorily relevant in
a variety of contexts, especially in the social and biological sciences. For example,
the fact that an economic system is a “free market” and not a “command economy”
may play an important role in explaining why certain macroeconomic variables are
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distributed in a particular way (Hoover 2001, p. 45). A command economy is one
in which economic production (among other things) is controlled by the govern-
ment, so the number of goods produced and resources employed have particular
causal dependencies, as decided by the central authority. That is, a command econ-
omy will have a particular causal structure in contrast to a free market economy
which will have a different causal structure, determined only by unregulated mar-
ket forces. Compare this story with an explanation in cancer science due to Casini
et al. (2011). Casini et al. appeal to the structure of a cell’s “DNA repair mecha-
nism” (how various cell subsystems and components respond to DNA damage) in
explaining the cancer’s progress and responses to certain treatments. When the repair
mechanism functions correctly, i.e., when the causal structure has the connections
expected of a healthy cell, then one can expect certain behavior. But malfunctioning
cells have a different mechanism for repair—a different structure—and this is cru-
cial for understanding cell survival in biological systems affected by cancer. What
these two examples from macroeconomics and cell biology share is that they both
appeal to features of causal structure (not events) to explain some phenomenon of
interest.

What “structure” refers to here includes “what causes what” and also other char-
acteristics of causal relations under study, such as the magnitudes and signs of the
various causal connections in a system. The fact that a system has certain causal fea-
tures, e.g., that A causes B and not the other way around, or that C inhibits D and
doesn’t promote it (the causal effect is negative not positive), may be of interest for
a number of reasons. In light of such facts, one may pose a class of counterfactual
questions: for example, what would be different if, contrary to fact, B caused A or if
C promoted D? Or what if A had only a “weak” influence on B instead of a “strong”
one? Woodward (2003) calls such “what-if-things-had-been-different” questions w-
questions. In this paper I propose a way of interpreting w-questions when they concern
structural features, which extends the usual notion of an intervention. In other words,
I propose an interventionist semantics for counterfactuals about causal structure. Fur-
ther, I suggest techniques for learning the answers to these counterfactual questions; I
consider how scientists may use typical data and models to learn about interventions
on structural features. The intuitive but often opaque language of changes to struc-
tural features, sometimes expressed as the possibility of “modifications of the arrows”
in a causal graph (Morgan and Winship 2012), can be understood and explored sys-
tematically without abandoning the concepts and tools already employed in causal
modeling.

Formally speaking, I will identify structural features with sets of causal parameters
(and functions) in structural equation models. I will suggest we interpret counterfac-
tuals about structural features as claims about alternative parameter settings in these
causal models, and consequently we can explore the truth-values of these counter-
factual claims with a combination of (machine-implementable) data manipulation,
simulation, and statistical estimation.

This project has connections to two important questions in the philosophical lit-
erature on explanation. There is an interest among philosophers of science in the
possibility of non-causal explanation (see, e.g., Strevens 2008, pp. 177–180; Lange
2016). Are all good explanations in empirical science ones which cite relevant causal
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facts, and thus subject to the constraints or limitations of our “best” theories of
causation? Separately, there is a longstanding controversy over the place of struc-
tural features in social science (e.g., Jackson and Pettit 1992; List and Spiekermann
2013; Haslanger 2016). Structural features have been understood in various ways, and
in these discussions researchers typically inquire into the explanatory role of (e.g.)
interpersonal relations or facts about social organization in contrast with facts about
individual actors. One can raise the same question for biological systems, and indeed
my understanding of structural features should apply to both social and biological sci-
ence. On my formal characterization of structural features and counterfactuals about
them, claims about structure can figure in causal explanations. Note that though I will
not defend this claim here, I endorse Woodward’s broad notion of causal explana-
tion: “roughly, any explanation that proceeds by showing how an outcome depends
(where the dependence in question is not logical or conceptual) on other variables or
factors counts as causal,” (Woodward 2003, p. 6). A consequence of my view pre-
sented below is that any purportedly non-causal explanations must be non-causal by
virtue of something other than the fact that they cite structural features. Moreover,
though I will not argue for the superiority of explanations which cite either “micro”
or “macro” features (i.e., I do not contribute to the debate over “reductionism” in
social science explanations), on my proposal structural features can at least sometimes
be fruitfully identified with relations among causal variables and thus some impor-
tant structural explanations can occur on the same “level” as familiar interventionist
explanations.

First, I will elaborate on the issue with some examples and explain why the existing
literature on causal manipulation does not always suffice to make sense of claims
about structural features of scientific interest. I assume a broadly interventionist view
of causation along the lines of Woodward (2003) and Pearl (2009), although I will
return to the topic of causation in general in the last section.

2 Manipulation and macro-level structural features

It is common in several areas of social science—including sociology,macroeconomics,
social epidemiology, and others—to investigate the relationship between social out-
comes of interest (e.g., wealth, health, or political stability) and macro-level structural
features such as “patriarchy,” “globalization,” and “healthcare infrastructure” (e.g.,
Witz 1990; Rodrik 2008; Bhargava et al. 2005). Moreover, concepts like patriarchy,
capitalism, globalization, and systemic racism appear in various areas of social philos-
ophy. Concepts such as these are difficult to define and operationalize across contexts;
different kinds of studies may call for different understandings of what patriarchy
consists in, for example. Yet these ideas figure in explanations, and in particular are
often relevant to inferences concerning future policies. The connections between these
abstract concepts and concrete policy interventions often remains obscure. What does
it mean to intervene on patriarchy? How can we ever learn about how labor condi-
tions might be different in an economic system which is not subsumed under global
capitalism? Is it possible to intervene on a society’s healthcare infrastructure all at
once? These issues are practically important but difficult to answer at any level of
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generality in the interventionist framework because these diffuse or distributed fac-
tors are rarely captured by a single variable in an empirical study, and, when they are
explicitly represented as variables, these are probably not features of society which
one can manipulate independently of the other variables in the system (Bright et al.
2016, p. 76). Interventionism explicates the semantics of causal claims by reference
to possible or hypothetical changes to variables. In order for a variable X to be consid-
ered a cause of Y there must be some way to change X which satisfies the conditions
laid down in formal theories of causal manipulation (Woodward 2003, pp. 94–99;
Pearl 2009, pp. 68–72). Roughly speaking, the intervention on X must not affect Y
(if at all) except via X , i.e., confounding dependencies between the intervention and
other causes of Y are not allowed. Causal claims about social features including patri-
archy and capitalism are confusing because it does not seem like such interventions
are possible, even in principle. Prima facie, global capitalism seems to be a cause
of the distribution of resources among nations but it is unlikely that any interven-
tion which “ends global capitalism” will not also involve redistribution of resources,
in violation of the conditions on an intervention. One option for responding to such
considerations is to deny that these concepts are either cogent or causal, or that they
can figure in causal explanations (cf. Steel 2006). I propose an alternative: we can
interpret (in certain contexts) macro-level social features as facts about the causal
structure of society, and we can use the resources available in causal modeling to
investigate what might be different under alternative social structures. More gener-
ally, I will use the term structural features to refer to “facts about the causal structure”
of a system, and I will formally identify structural features with collections of struc-
tural parameters (and possibly functions) in a causal model. Interventions can be
understood as changes in the structural parameters (and/or possibly functional rela-
tionships).

Thinking about the consequences of different parameter settings is commonpractice
in certain areas of science. Consider a simple example frommacroeconomics. Hoover
(2001, p. 48) discusses an economic model relating money supply, interest rates,
income, and some other measurable variables. He provides a hypothetical model for
the system under study (a set of linear equations, illustrated with a graph in Fig. 1), and
notes that the model would be different in theoretically interesting ways if the central
bank were to enact a policy to make interest rates constant. The bank can accomplish
this by manipulating the causal relationship between income and money supply, so
that the influence of income onmoney exactly counterbalances the influence of money
on interest rates.1 The important point here is that an economic regulation amounts
to manipulating parameters in the model, which could mean setting some parameter
equal to zero or to some particular non-zero value which balances other influences,
making interest rates constant and thus probabilistically independent of money supply.
The bank does not intervene directly on interest rates, nor does it arbitrarily increase

1 This relates to a point raised by Cartwright (1999, pp. 16–17) and others: policies may produce violations
of faithfulness (Spirtes et al. 2000). That is because policies which engineer structural parameters on
converging paths to exactly cancel make variables appear statistically independent even when they are
in fact causally dependent. This can pose problems for applying causal search algorithms that rely on
faithfulness as an assumption.
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Fig. 1 A graphical illustration of Hoover’s (2001, p. 48) example. M is money supply, R is the interest rate,
Y is income, and S represents “shocks.” The notation is changed somewhat. He considers an intervention
by the central bank which sets θ1 = −θ2/θ3

or decrease the money supply. Instead, as a matter of legal regulation, it changes the
economic structure by manipulating the strength of one variable’s causal influence on
another.2

Causal parameters can vary for natural reasons too. For example, plant biologists
Bishop andSchemske (1998) study populations ofLupinus lepidus (a kind of flowering
legume) which colonize heterogeneous environments before and after a volcanic erup-
tion. Their study, which makes use of structural equation modeling (a causal modeling
framework discussed in the next section), considers the causal relationships among
several plant attributes including total flower number, flowering duration, mean date
of inflorescence production, and percentage of flowers damaged. They estimate struc-
tural coefficients for multiple plant populations that vary in environmental background
and find that the causal dependencies between measured variables differ in different
populations. For example, the effect of mean date of inflorescence production on per-
centage of flowers damaged varies among different environments. The upshot here is
that interesting differences in structural features can be produced by natural differences
in background ecology. Nobody enacted a policy to regulate structural features in the
different plant populations, but the hetergeneous background ecologies are analagous
to different policy regimes in the social world.

Themacroeconomic example is relatively straightforward in the sense that the struc-
tural feature under consideration is just a fact about one causal parameter: the influence
of income on money supply. The plant biology example is more complicated because
researchers actually consider changes in multiple parameters. Similarly, macro-level
features of social structure such as patriarchy and health infrastructure are perhaps
most fruitfully interpreted as claims about several structural parameters. A patriarchal
social system might be one in which gender is a cause of various features of social
life and measures of status: gender is a cause of income, a cause of occupational pres-
tige, a cause of domestic decision-making power, etc. Kaufman (2014) claims that

2 Note that Hoover would object to my characterization here, because we use different terminology, viz.,
different definitions of “parameter,” “variable,” and “structure.” I will return to Hoover’s alternative view
later in the paper, after my own view has been more formally spelled out. In this discussion, I use “variable”
and “parameter” as is common in classical statistics and the literature on causal modeling (e.g., Pearl,
Woodward, Spirtes et al.): variables are measured quantities and parameters are population-level quantities
inferred or estimated from the data.
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epidemiologists have a roughly similar notion about racism: to reduce or eliminate
racism, for Kaufman, is to eliminate the causal connection between race and socio-
economic status (and presumably other measures of well-being). In the context of a
particular structural model, a nation’s health infrastructure might be constituted by a
collection of facts including how an individual’s distance from the capital city affects
their access to medicine, the fact that wealth strongly influences hospital quality, the
fact an individual’s frequency of doctor visits depends on what kind of health insur-
ance they have, and so on. In other words, a claim about the healthcare infrastructure
is a claim about the causal structure of a society—which causal connections exist
and what their strengths are, or which social attributes (in part) determine health out-
comes. To answer a w-question about alternative healthcare infrastructures is to ask
about how things might turn out in a society where various causal connections are
different.

3 Structural features in structural equation models

Many social and biological systems are represented by structural equation models
(SEMs). I’ll begin formally explicating interventions on structure with reference to
a simple class of such models, and then generalize by relaxing some simplifying
assumptions.

Consider a single, linear structural equation with 3 measured variables and additive
noise:

Y = θ1X1 + θ2X2 + εY (1)

X1 and X2 are (potential) direct causes of Y and the exogenous error variable εY
represents the combined influence of all the other causes of Y which are not explicitly
represented in themodel (Woodward1999). Implicitly, X1 and X2 are also exogeneous,
i.e., X1 = εX1 and X2 = εX2 though by convention this is not always written down.
The parameters θ1 and θ2 represent the strength of the causal connections between
X1 and Y and X2 and Y respectively; they can be zero (which means no causal
influence), positive, or negative. The value of θ1 indicates how much Y will change
given a unit change in X1.3 Say in reality θ1 = 0.4 and θ2 = −1.3. The vector
(θ1, θ2) = (0.4,−1.3) summarizes a lot about the causal structure of the system:
it tells us what causes what (which parameters are zero) and what the strengths of
the causal connections are. In the context of linear SEMs, my proposal amounts to
identifying interventions on structure with settings of parameters (adapting Pearl’s
do notation): do(θ1, θ2 = θ̃1, θ̃2), where the tilde indicates new, specific values for
individual parameters. One can intervene to change (θ1, θ2) = (0.4,−1.3) to (0, 0.87)
or (0.4,−0.2) or some other vector. This may be the result of some real or imagined
policy, like in Hoover’s interest rate example.

3 If we leave the world of SEMs and instead model a system with a parameterized, discrete-valued Bayes
net, then the variables can each take on a finite number of “states” and parameters are just state transition
probabilities.
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More generally, an SEM may consist of a number of structural equations, which
may or may not be linear. For example:

X1 = ε1

X2 = f2(X1;α) + ε2

X3 = f3(X1, X2;β, γ ) + ε3. (2)

Each variable Xi is related to its direct causes by some smooth function, fi . This
model involves no feedback (the graphical representation will be acyclic). Here X1
has no causes except the error term. Each function is parameterized by some set of
parameters. For example, f3 maybeβ exp(−X1/γ )+sin(γ X2).An interventionon the
structure of such a system is a setting do( f2, f3, α, β, γ = f̃2, f̃3, α̃, β̃, γ̃ ). That is, we
replace the functions with (possibly) new functions and the parameters with (possibly)
new values. There is already some work which explores interventions on functions.
Mooij and Heskes (2013) investigate changes to a system which amount to changing
the function relating Y to its direct causes, i.e., replacing Y = f (X1, X2, ε) with
Y = f̃ (X1, X2, ε), where X1 and X2 are direct causes of Y .4 The scientific application
which Mooij and Heskes have in mind is the study of protein-signaling networks in
cellular biology. Changing the functional relationship between two variables is meant
to model the kind of experiments which—inMooij and Heskes’ terminology—change
the “activity” (not “abundance”) of compounds in the cell.

Most abstractly, an intervention on the structure of an SEM is a setting of the
functions and parameters which characterize the model to a new set of functions and
a new set of parameter values: do({ fi }, {θi } = { f̃i }, ˜{θi }). There is one function for
each variable that appears in the model, i.e., the function which relates the i th variable
to every other variable.5 θi is the corresponding vector of parameters for function fi .

Interventions on structure defined in this way should be familiar to economists (e.g.,
Cooley and LeRoy 1985). The definition here is also a general version ofwhat Tian and
Pearl (2001) call a “mechanism change.” In that paper, Tian and Pearl are working
in the framework of directed acyclic graphs (DAGs), and they are principally con-
cerned with learning causal structure from data when mechanism changes—changes
in causal parameters—are estimated to have taken place. Note that there are connec-
tions between this work and the econometric literature on “structural breaks” (e.g.,
Hoover and Sheffrin 1992; Perron 2006), though I will not elaborate on the connection
here. Steel (2006) discusses interventions which he calls “structure-altering interven-
tions”; these are formally different from the interventions I consider because Steel’s
interventions directly change the distributions of measured variables as well as the
causal connections among them (thus they are non-ideal interventions on variables in
Woodward’s (2003) terminology). Interventions on structure as I have defined them

4 ε is inside the function because the authors do not assume that the causal mechanism is necessarily
additive in the noise variable. They also allow for causal feedback; more on that below.
5 Note that some variables may not be causally related and some may have no causes at all among the
measured variables, only error terms. This is all easy to accomodate with functions defined accordingly:
functions can be independent of some (or all) of their arguments, and so we can assume every variable is
an argument of every function to be maximally general.
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only directly change causal connections, though they can indirectly affect “down-
stream” distributions of measured variables.6

So far, I’ve only proposed a formal definition of an “intervention on structure”
and in the next section I will discuss how we might infer the consequences of such
an intervention. My definition is analagous to the standard notion of intervention on
variables found in Pearl (2009), Woodward (2003), and Spirtes et al. (2000), where an
intervention is a change to some feature of the model but which leaves most of the rest
of themodel intact. In the Pearl/Woodward/SGS case, the distribution of some variable
changes, and the variable becomes disconnected from its causes; the rest of the model
is not directly affected. In my case, the value of some parameter (or function) changes,
and since causal parameters are not “caused” by other parameters or variables in the
model, nothing else is changed by the setting; the rest of the model is not directly
affected. My definition is motivated by certain common counterfactual questions, and
so it might help to give some examples.

Consider again model (1), with parameter values (θ1, θ2) = (0.4,−1.3). Typically
to fill out the model we also assume a probability distribution for the exogenous
variables as part of the model, e.g., that εX1 , εX2 , εY ∼ N (0, 1). We might ask: “what
would be the distribution of Y if X1 had a stronger effect on Y , say twice as strong?”
On my construal, we can make this precise: “what would be the distribution of Y
given do(θ1 = 0.8)?” In order to answer this question, we would need to calculate the
distribution of Y in the model:

Y = 0.8X1 − 1.3X2 + εY ,

with εX1 , εX2 , εY ∼ N (0, 1) as before. Alternatively we might ask: “what would be
the distribution of Y if X2 did not cause Y , i.e., X2 had precisely zero effect on Y ?”
On my construal, this is: “what would be the distribution of Y given do(θ2 = 0)?” In
order to answer this question, we would need to calculate the distribution of Y in the
model:

Y = 0.4X1 + 0X2 + εY ,

with εX1 , εX2 , εY ∼ N (0, 1) again. We might even ask: “what would be the joint
distribution over all the variables if the causal relationship between Y and X1 were
flipped?” Things get more complicated here, but on my construal this is asking about
the resultant distribution given do(θ1, θ3 = 0, 0.4) where θ3 is the causal effect of
Y on X1 (previously implicitly zero). That is, we would need to calculate the joint
distribution for the variables in the model:

Y = 0X1 − 1.3X2 + εY

X1 = 0.4Y + εX1 ,

6 Steel’s focus in (2006) is invariance and explanation across macro/micro descriptions of social systems.
He is not concerned with learning the truth-values of structure-altering counterfactual claims, so he does
not provide any procedure for doing so. The examples he uses to motivate his definition of structure-altering
interventions may be quite plausible, and it would be illuminating to work out a technique for predicting
the outcomes of structure-altering interventions to compare with the proposal in the next section.
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with εX1 , εX2 , εY ∼ N (0, 1). This last counterfactual may be a strange one to
consider—there may be no plausible policy which corresponds to a change in θ1 and
θ3 but which keeps the distribution of εX1 unchanged—but the counterfactual question
can be posed precisely. I will return to this issue and the issue of calculable interven-
tions on structure in the next section. Note that one may likewise pose counterfactual
questions about structural change in possibly non-linear causal models, even models
with interaction effects: e.g., “what would be the distribution of Y if the functional
dependence of Y on X1 and X2 were multiplicative rather than additive?”7

Consider the following more concrete hypothetical example. One may model part
of the healthcare system in a developing country with an SEM relating infant mortal-
ity to mother’s age, mother’s education, hospital quality, and access to reproductive
services. Say this last variable in turn depends on mother’s education (maybe certain
reproductive services are distributed through schools), and both mother’s education
and hospital quality depend on distance from an urban center. So we have this (grossly
oversimplified) model:8

Rep services = θ1Education + ε1

Hospital qual = θ2Distance + ε2

Education = θ3Distance + ε3

Infant mortality = θ4Age + θ5Education + θ6Hospital qual

+ θ7Rep services + ε4 (3)

with all errors mutually independent and distributed according to some assumed prob-
ability distribution. Say we estimate that

(θ1, θ2, θ3, θ4, θ5, θ6, θ7) = (1.2,−0.8,−0.9, 0.5,−0.4,−1.4,−0.6).

An intervention on the healthcare infrastructure might be one which makes access to
reproductive services independent of mother’s education (by evenly dispersing clinics
which provide reproductive services through the region, thus taking schools out of the
equation), and makes hospital quality only weakly dependent on distance from the
capital city (by allocating more hospital staff and funding to rural hospitals). So we
consider the intervention

do(θ1, θ2, θ3, θ4, θ5, θ6, θ7 = 0,−0.15,−0.9, 0.5,−0.4,−1.4,−0.6).

7 See Bright et al. (2016). Note that some counterfactual questions may be ambiguous, especially in the
context of non-linear models. For example, to ask “What would be the distribution of Y if the causal effect
of X1 was twice as strong?” relative to the model Y = 0.4X1 − 1.3X2 + 0.2X1X2, is ambiguous because I
could have inmind the coefficient on X1, the coefficient on the interaction term X1X2, or some combination
of these. Each option corresponds to a different intervention.
8 I omit equations for distance and the other exogenous variables from the model. Of course it is quite likely
that a better model is not linear and includes many more factors, but this model is for illustrative purposes
only. See Bhargava et al. (2005) for an actual empirical study which partially inspired this example.
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Now we can ask a precise w-question about the distribution of infant morality under
this alternative parameter setting.

This admittedly sketchy example brings out howone can explicate something corre-
sponding to “healthcare infrastructure” in the context of a particular model. Similarly,
“patriarchy,” “capitalism,” andothermacro-structural features of a systemmaybe iden-
tified with sets of parameters (and/or functions) in some model and we can ask, for
example, “whatwould be different about the distribution ofwealth if therewere no gen-
dered wage gap (no causal dependence of salary on gender), and if hiring/promotions
were gender-blind?” Policy proposals like the legal regulation of wages based on job
category or double-blind review in promotions decisions are attempts at manipulating
these causal dependencies.

It is worth briefly contrasting my proposal with an alternative formalism developed
by Hoover (2001, 2011, 2012, 2013), who also considers interventions on parame-
ters in several works. Hoover defines his terms quite differently than I do here. For
example, for Hoover “parameters” are those quantities which can be directly con-
trolled. Thus, all interventions are interventions on parameters; parameters are the
loci of interventions, as Hoover defines them. (Variables are controlled only indirectly
through control of corresponding parameters.) This leads Hoover to an importantly
different definition of structure. To put it briefly, Y = 0.4X1 − 1.3X2 + εY and
Y = 0.8X1 −1.3X2 +εY correspond to the same structure on Hoover’s view, because
he identifies only differences in causal ordering with differences in structure; on my
definitions, the two parameter settings correspond to different structures. On Hoover’s
formalism, interventions which transform X1 into a strong cause of Y (where X1 was
previously a weak cause) are not anything special but rather routine. On the other
hand, Y = 0X1 − 1.3X2 + εY and Y = −1.3X2 + εY are for Hoover two different
structures, since X1 is not a (potential) cause of Y in the second equation; on my
view, they are the same structure, since both amount to a setting of zero for the causal
effect of X1 on Y (and they are observationally equivalent). Though there are differ-
ences between Hoover’s broader causal theory (what he calls the “structural account”)
and the interventionist theory of causation associated with Pearl and Woodward, I
believe one may consistently adopt either framework for a given analysis. My goal
in this paper is to show how the interventionist framework, which has been fruit-
fully applied in many scientific domains but has hitherto been developed with only
interventions on variables (e.g., do(X = x)) in mind, can be extended to deal with
changes to parameters and functions—what I call structural features. Thus the account
of causal explanation which derives from the interventionist formalism can be effec-
tively extended to a broader class of phenomena. I hope that the foregoing examples
demonstrate that this account is not inappropriate to capture questions of real scientific
interest.

When we ask about what a system might look like with a different causal struc-
ture, we are asking about the outcome(s) of an intervention on structural features,
where only those variables which are causally “downstream” of the manipulated
parameters (or functions) are affected. Should we be wary of interventions on struc-
ture? Are they somehow less legitimate, perhaps in a metaphysical sense, than more
familiar interventions on variables? I think any such worries should be relieved by
the following observation: any intervention on structure can be redescribed as an
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intervention on a certain kind of variable.9 In particular, an intervention on structure
can be thought of as intervention on some hidden “policy variable” which interacts
with other variables in the system. Consider again Eq. (1) and the the intervention
do(θ1, θ2 = θ̃1, θ2). This can be redescribed as Y = θ1X1+θ2X2+(θ̃1−θ1)X1P+ε,
where P is an indicator variable which is 1 when the policy is “on” and 0 when it
is “off”. Setting P = 1 means that the relationship between Y and X1 is deter-
mined by the new parameter, θ̃1. In the social sciences, a variable such as P which
affects the relationship between X1 and Y is called a “moderator” or “pure mod-
erator” (MacKinnon 2008, ch. 10). Thus, interventions on structural features are
just equivalent to interventions on (hidden) moderator variables. The same can
be said in the context of non-linear models. Say Y = f (X1; θ) + ε and we’re
interested in do( f, θ = f̃ , θ̃ ). Then we can write Y = f (X1; θ) + ( f̃ (X1; θ̃ )

− f (X1; θ))P + ε. The specified intervention on structure is equivalent to an inter-
vention which sets the policy variable to 1, and more complicated cases can be
captured by the inclusion of multiple policy variables. Interventions on structure
do not require any radical departure from interventionist metaphysics, but they can
aid in our understanding of explanations which appeal to structural features and not
events.

Note that in the context of a given study, e.g. an experiment or analysis which
establishes some structural equation(s) from data, researchers will typically have no
useful information about P; the “policy” is “off” in the population under study and
we are interested precisely in the counterfactual population in which P is “on.”10 It
is natural to ask whether such a policy variable actually exists (or exists “in princi-
ple”), i.e., whether there is a feasible policy which interacts with the other variables
in the specified way and which someone can enact. I will return to this existential
question in Sect. 5. The expanded system of equations with added policy variables
is only a mathematical device, a redescription of the system which makes salient
the fact that changes to parameters are not formally different from changes to vari-
ables.

One could model all these hidden policy variables directly, although this would be
cumbersome and not much would be gained by doing so. For a range of interventions
under consideration, one could write down an extended model with multiple policy
variables which are indicators, with all the right interactions to produce the intended
parameter setting when the policy is “on.” There might be benefits to such an exercise,
but the important point remains that counterfactuals about structure are just statements
about alternative parameter settings of causal models. The key question is: how can
we know the outcomes of such interventions from data, when we have not actually
observed the system with the policy “on”?

9 I am indebted to Greg Gandenberger for raising this point.
10 More technically, I am not assuming that researchers will have a joint probability distribution over all
the variables in the expanded model which includes P , nor even that such a joint probability distribution
would be well-defined in complex, non-recursive cases. My only claim is that one can always write down an
expanded system of equations with moderator variables which is equivalent to the actual observed system
when the policy is “off” and which is describes the counterfactual system when the policy is “on.”
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4 Learning about the outcomes of interventions on structure

In the previous section I explicated counterfactual questions about structure in terms
of interventions on structural features. It is a separate issue which such counterfactual
questions have well-defined and calculable answers. In a structural equation model,
causal parameters are assumed to be independent, i.e., variation free. This means that
θ1 can take on any value in its range of admissible values independent of the value of
θ2, and likewise for the other parameters. Zhang et al. (2015) discuss more formally
the conditions under which parameters are variation free, and relate this assumption
to other causal and statistical modeling assumptions. Here I follow common prac-
tice in structural equation modeling (as well as causal modeling with DAGs or other
representations) in stipulating that the identified parameters in the SEM are variation
free, and that the ranges of admissible values for the parameters are set by background
knowledge of the domain.11 In a (possibly non-linear) SEMwith no feedback, the vari-
ables have a well-defined joint probability distribution for all values of the parameters
(or functional dependencies). In fact, if one knows the probability distributions of the
exogenous errors, than one can derive analytically the joint probability distribution of
all the variables, or any marginal distribution, for any parameter setting.

To emphasize this point, consider theManipulation Theorem of Spirtes et al. (2000,
p. 51). Spirtes et al. consider causal models represented by DAGs which satisfy
the Causal Markov Condition. They define interventions on variables in much the
same way as Pearl (2009) and Woodward (2003): “ideal” or “surgical” settings of
variables to fixed values. The Manipulation Theorem says that if a causal graphi-
cal model satisfies the Causal Markov Condition, then the outcome (implied joint
probability distribution) of such an intervention is well-defined, and can be calcu-
lated using a particular formula from the observational distribution. Similarly, since
SEMs with no feedback have well-defined and calculable implied joint probability
distributions for all parameter values, interventions on parameters (just settings of the
parameters to particular values) imply well-defined and calculable probability distri-
butions.

Unfortunately, the story is not so simple for models which exhibit causal feedback.
Systems with feedback can be represented by cyclic causal graphs or non-recursive
SEMs (Spirtes 1995; Richardson 1996; Mooij et al. 2011). It is typically assumed
that the system is measured at some kind of equilibrium. Then, the outcome of
an intervention on the system is understood as a change which (potentially) brings
the system to a new equilibrium, i.e., a new joint probability distribution over the
variable set. Feedback mechanisms impose constraints on the functions and struc-
tural parameters which can be fruitfully considered as candidate “policies.” Roughly
speaking, a model has a well-defined equilibrium distribution only so long as the
functions do not “blow up,” i.e., create an unstable feedback process. Consequently,
some interventions on sets of structural parameters or functions make counterfactual
prediction impossible. In the linear case, there is a well-defined equilibrium distri-

11 SeeWoodward (1999) comments on invariance, and alsoCartwright (2003).Theyhave inmind invariance
with respect to interventions on variables, but many of the same considerations carry over to invariance
with respect to interventions on structural features.
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bution only when the structural coefficients involved in the feedback loop satisfy a
mathematical constraint (see Fisher 1970).12 That means that only those interven-
tions on structural parameters that satisfy this mathematical constraint will lead to
stable outcomes. There are analagous mathematical constraints in non-linear mod-
els; Mooij et al. (2011) derive formal conditions for non-linear, non-recursive models
with Gaussian errors and only two variables. More general formal conditions for
systems with many variables can be investigated, but the upshot will be the same.
Only those interventions on structural relationships which lead to equilibrium can
really be explored in non-recursive structural equation models. The same is true for
structural models of dynamic systems (i.e., models of stochastic processes). Param-
eters in such dynamic models must satisfy certain mathematical constraints in order
to be well-behaved in a statistical sense; otherwise the system does not have a sta-
ble distribution. Thus, in considering candidate interventions on structure in models
with feedback or dynamical processes, we can only investigate counterfactual set-
tings which respect these mathematical constraints, or else we are setting ourselves
up to consider counterfactual predictions for an unpredictable system. Moreover,
even in SEMs with no feedback, we have to be careful that the proposed inter-
vention does not create a feedback loop, or else the same mathematical constraints
apply.

For the remainder of the paper, assume the model is a recursive SEM (no feed-
back), and consider only interventions which create no feedback loops. Though it is
possible to calculate the implied probability distribution of an intervention on struc-
ture analytically when the distributions of exogenous variables are known, sometimes
the distributions are not known, and we would like to estimate the counterfactual
distribution from available data. For example, consider again the simple model (1):

Y = θ1X1 + θ2X2 + εY

Assume that one has access to enough data on the measured variables X1, X2, and Y
to establish Eq. (1) reliably, with parameter estimates θ̂1 and θ̂2. Estimate the empirical
distribution of εY by taking the residuals, i.e., Y − θ̂1X1 − θ̂2X2. Now, we can ask the
following w-question: what would be the distribution of Y if θ1 = θ̃1 instead of θ̂1?
Well, the influence of X2 and εY would not change, by assumption. So one could re-use
the data to estimate the distribution of Y in the following way. Take the measurements
on X2, multiply them by θ̂2. Add these to the measurements on X1, multiplied by the
new parameter value θ̃1. Add to each data point in this new vector a number drawn
from the error distribution. Now the researcher has a new set of values for Y . Using
any number of density estimation methods (e.g., kernel based methods, histograms),
the researcher can construct a counterfactual empirical probability distribution for Y .
Alternatively, one may estimate the mean of Y if that is the only quantity of interest.
The logic behind this informal algorithm is just that a change to θ1 implies a change to
the data downstream from θ1. Using the data and standard statistical techniques, the
posed w-question can be answered.

12 The eigenvalues of the coefficient matrix of the non-recursive structural equations must have modulus
less than or equal to 1.
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Consider a slightlymore complicated example,where themodel consists of a system
of linear structural equations:

X2 = θ2,6X6 + ε2

X1 = θ1,3X3 + θ1,5X5 + ε1

X4 = θ4,1X1 + θ4,2X2 + ε4 (4)

This system is just like the first one: it is linear, with no feedback, and assume the error
variables are all jointly independent, meaning that there are no unmeasured common
causes in the system (the model is “causally sufficient” in the terminology of Spirtes
et al. 2000). X1 is a direct cause of X4, but also has its own direct causes, X3 and
X5. Imagine an intervention do(θ1,3, θ1,5, θ2,6, θ4,1, θ4,2 = θ1,3, θ̃1,5, θ2,6, θ̃4,1, θ4,2).
The only parameters which change are θ1,5 and θ4,1. To determine the distribution of
X4 after this manipulation we proceed as before, but with an extra step which reflects
the causal order: to know the distribution of X4 we need to know X1, which depends
on X5. So, take the data on X5 multiplied by the new parameter θ̃1,5, and add it to
θ̂1,3 times the measurements on X3. Add a random deviate to each data point from
the empirical distribution of ε1. The result is a new set of data points for X1. Use
these data points, multiplied by θ̃4,1 and added to θ̂4,2 times X2 plus points from the
empirical distribution of ε4. The result is a new set of data points for X4. One can go
on to estimate the density of X4 with their preferred density estimation technique.

To proceed in this manner for the hypothetical healthcare infrastructure example
from Sect. 3, we would consider the distribution of reproductive services after clinics
were evenly dispersed (i.e., do(θ1 = 0)), and the distribution of hospital quality after
hospital staff and funding was re-allocated to rural hospitals (weaking the influence
of distance by setting do(θ2 = −0.15)). With these new distributions we estimate the
counterfactual distribution of infant mortality using the last equation.

The reasoning above is quite transparent, and it is easy to generalize for linear
structural equation models with no feedback. Given a model, some data, and a new
vector of parameters one may calculate the post-intervention distribution of some
variable Y by following a sequence of data manipulations based on the model. First
identify the causes of Y and their causes and so on. Begin by recalculating the data
points for each variable causally upstream from Y using the appropriate combination
of weighted data vectors and error variables.13 Move down in the causal order toward
Y until arriving at a new set of data points for Y , and then estimate the density. This
set of steps would be easy to implement on a computer. The performance of the
procedure, including the estimation techniques involved (at varying sample sizes) and
the consequences of small errors, can be investigated by simulation.

13 If the quantity of interest is only the post-manipulation mean of Y , and not its entire density function,
then it may be prudent to simply add the mean of the relevant error variable at each step. The errors are
assumed to be Gaussian with mean zero in many typical models, in which case this is trivial. However, more
generally if one is interested in the distribution of Y and the error variables are not normally distributed, i.e.,
if there is important information in the error distribution, then simply adding the mean of ε will not suffice.
When the errors are significantly non-Gaussian, then the full distribution of ε is likely relevant. Thanks to
Jonathan Livengood for raising this issue.
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The same reasoning can be extended to SEMs which are not linear, such as in
equation system (2). Non-linearities and non-Gaussian error distributions make the
statistical problem progressively more difficult—requiring larger sample sizes, more
computational resources, perhaps sacrificing statistical reliability—but the underlying
logic is simple. The work involved (estimation and re-estimation of quantities based
on the model, simulations to assess reliability or robustness) is no different from the
kind of work which already goes on in empirical social and biological sciences. In
fact, something approximating my suggestion is already common practice in areas of
empirical economics (see Aguirregabiria and Ho 2012).

It isworth emphasizing that on this view, the truth or falsity of a counterfactual about
structure is tied to a particular causalmodel. Fix a causal structure (in this case, an SEM
with no feedback) and then there are clear rules for answeringw-questions about struc-
tural features. Sometimes, a whole class of causal models which share important fea-
tures (maybe all thesemodels agree that X causesY which causes Z , but disagree about
whether Z causes W ) can imply the same verdict on a given w-question because not
every causal fact is relevant to a particular counterfactual.14 In any case, whenwe inter-
pret the meaning of structural counterfactuals in the manner suggested here, we also
have (the beginnings of) an epistemology for learning which counterfactuals are true.

Learning about counterfactuals on structure from observational data is an even
harder problem than the usual problem of learning standard interventionist counter-
factuals. Though this ought to be thoroughly investigated by simulation, the technique
sketched here is bound to leave a substantial amount of uncertainty in the answer to
any particular question. Thus, while I have argued that counterfactuals about struc-
tural features are well-defined and knowable in principle, in practice available data
may rarely resolve counterfactual predictions about changes in “healthcare infrastruc-
ture,” “patriarchy,” and the like. Possible problems for future research may include
investigating finite-sample performance of counterfactual estimation techniques via
simulation (where the truth is known) and inquiring into possible statistical consistency
guarantees.

5 Are structural features really causes?

Throughout this discussion I have assumed that social systems and biological systems
exhibit causal structure: they can be represented as systems of causally interpreted
structural equations, or parameterized causal graphical models. All of Woodward
(2003), Pearl (2009) and Spirtes et al. (2000) agree that the causal relata are random
variables. For all of these authors, the notion of an intervention plays a central role
in the epistemology of causation. None of them consider structural features, as I have
defined them, to be causes.

One difference between Woodward and Spirtes et al. is that Woodward defines
causation in terms of interventions (A is a cause of B iff there exists an intervention
on A satisfying certain properties) while Spirtes et al. take what may be called an
axiomatic approach where “direct cause” is a primitive: roughly speaking, A directly

14 Thanks to Conor Mayo-Wilson for discussion on this point.
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causes B with respect to some set of variables when A → B in a model which satisfies
the Causal Markov Condition over that set. From this stipulation and several other
conditions they arrive at a calculus of interventions, which specifies the consequences
of an intervention, if there is one (Glymour 2004; see also Glymour and Glymour
2014). Whether there actually exists an intervention with such-and-such properties
does not determine whether A is a cause of B.

My suggestion in this paper is in the spirit of this latter view, even though structural
features are not among the causal relata in Spirtes et al. and they do not develop a
calculus for interventions on structural features. Whether or not there exists a practi-
cally feasible (or possible “in principle”) intervention which sets (θ1, θ2) to (θ̃1, θ̃2)

and leaves the causal model otherwise adequate is an important question, but it is a
question which can only be answered by careful attention to the domain of empiri-
cal application. My approach to the w-questions which are the focus of this paper is
epistemological; I suggest a way that scientists might interpret and learn about the
consequences of interventions on structural features, whether they are hypothetical or
actual. If one endorses the prerequesite that an intervention on θ must be possible for
a causal counterfactual about θ to be true (or false), this does not in any serious way
conflict with my proposal. It does, however, significantly limit the number of poten-
tially interesting or useful counterfactuals which scientists may add to their body of
knowledge. Though some parameters may enjoy the special status of “fundamental
constants” in areas of physics, physicists routinely investigate what things might be
like with alternative values for these parameters—think, for example, of simulations
in cosmology which tell us about how the universe would evolve were the curvature
of space different. We probably cannot intervene to make space curved instead of
(nearly) flat, but we can surely reason about what that would be like, and appeal to
that reasoning in the course of explaining some phenomenon. Counterfactuals about
such structural features clearly do play a role in explanations. Thus, an interventionist
explication of counterfactuals about structural features places such explanations firmly
within the purview of causal explanation. (Recall that I endorse Woodward’s broad
notion of causal explanation.) One upshot of this view is that when we evaluate the
adequacy or success of explanations that appeal to structural features, we can appeal
to the same adequacy criteria proposed for causal explanations, keeping in mind the
thorny epistemological worries raised in Sect. 4. There is much further work to do in
this domain, but I hope that the preceeding discussion has demonstrated that the kind
of hurdles involved in establishing counterfactual claims about structural features are
just scientific challenges, which we can confront with the same inferential methods
employed in other areas of scientific inquiry.
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